Joint Optimization of Server Placement and Content Caching in Mobile Edge Computing Networks

Zhen Liu, Jiawei Zhang, Jingyan Wu
{"title":"Joint Optimization of Server Placement and Content Caching in Mobile Edge Computing Networks","authors":"Zhen Liu, Jiawei Zhang, Jingyan Wu","doi":"10.1145/3375998.3376024","DOIUrl":null,"url":null,"abstract":"To address the severe challenge from the rapid growth of number of downloads of contents via mobile network, it is imperative to develop efficient content caching scheme in mobile edge computing (MEC) networks, which can alleviate the heavy burden on backhaul links and reduce the delay for content delivery. However, the caching performance is highly related to the MEC server placement. In this paper, we jointly optimize the server placement problem and content caching problem in MEC networks. We propose a heuristic algorithm based on Kuhn-Munkres (KM) algorithm and greedy algorithm to minimize the average delay and average bandwidth resource usage. The simulation shows that our proposed algorithm can reduce delay and bandwidth, compared with other schemes.","PeriodicalId":395773,"journal":{"name":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375998.3376024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

To address the severe challenge from the rapid growth of number of downloads of contents via mobile network, it is imperative to develop efficient content caching scheme in mobile edge computing (MEC) networks, which can alleviate the heavy burden on backhaul links and reduce the delay for content delivery. However, the caching performance is highly related to the MEC server placement. In this paper, we jointly optimize the server placement problem and content caching problem in MEC networks. We propose a heuristic algorithm based on Kuhn-Munkres (KM) algorithm and greedy algorithm to minimize the average delay and average bandwidth resource usage. The simulation shows that our proposed algorithm can reduce delay and bandwidth, compared with other schemes.
移动边缘计算网络中服务器布局和内容缓存的联合优化
为了应对移动网络内容下载数量快速增长带来的严峻挑战,在移动边缘计算(MEC)网络中开发高效的内容缓存方案势在必行,该方案可以减轻回程链路的沉重负担,减少内容传输的延迟。但是,缓存性能与MEC服务器的位置高度相关。本文对MEC网络中的服务器布局问题和内容缓存问题进行了联合优化。提出了一种基于KM算法和贪心算法的启发式算法,以最小化平均时延和平均带宽资源占用。仿真结果表明,与其他方案相比,本文提出的算法能够有效地降低时延和带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信