Facial expression recognition based on LLENet

Dan Meng, Guitao Cao, Zhihai He, W. Cao
{"title":"Facial expression recognition based on LLENet","authors":"Dan Meng, Guitao Cao, Zhihai He, W. Cao","doi":"10.1109/BIBM.2016.7822814","DOIUrl":null,"url":null,"abstract":"Facial expression recognition plays an important role in lie detection, and computer-aided diagnosis. Many deep learning facial expression feature extraction methods have a great improvement in recognition accuracy and robutness than traditional feature extraction methods. However, most of current deep learning methods need special parameter tuning and ad hoc fine-tuning tricks. This paper proposes a novel feature extraction model called Locally Linear Embedding Network (LLENet) for facial expression recognition. The proposed LLENet first reconstructs image sets for the cropped images. Unlike previous deep convolutional neural networks that initialized convolutional kernels randomly, we learn multi-stage kernels from reconstructed image sets directly in a supervised way. Also, we create an improved LLE to select kernels, from which we can obtain the most representative feature maps. Furthermore, to better measure the contribution of these kernels, a new distance based on kernel Euclidean is proposed. After the procedure of multi-scale feature analysis, feature representations are finally sent into a linear classifier. Experimental results on facial expression datasets (CK+) show that the proposed model can capture most representative features and thus improves previous results.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Facial expression recognition plays an important role in lie detection, and computer-aided diagnosis. Many deep learning facial expression feature extraction methods have a great improvement in recognition accuracy and robutness than traditional feature extraction methods. However, most of current deep learning methods need special parameter tuning and ad hoc fine-tuning tricks. This paper proposes a novel feature extraction model called Locally Linear Embedding Network (LLENet) for facial expression recognition. The proposed LLENet first reconstructs image sets for the cropped images. Unlike previous deep convolutional neural networks that initialized convolutional kernels randomly, we learn multi-stage kernels from reconstructed image sets directly in a supervised way. Also, we create an improved LLE to select kernels, from which we can obtain the most representative feature maps. Furthermore, to better measure the contribution of these kernels, a new distance based on kernel Euclidean is proposed. After the procedure of multi-scale feature analysis, feature representations are finally sent into a linear classifier. Experimental results on facial expression datasets (CK+) show that the proposed model can capture most representative features and thus improves previous results.
基于LLENet的面部表情识别
面部表情识别在测谎和计算机辅助诊断中起着重要的作用。许多深度学习面部表情特征提取方法在识别精度和鲁棒性上都比传统特征提取方法有了很大的提高。然而,目前大多数深度学习方法需要特殊的参数调整和特殊的微调技巧。提出了一种新的面部表情特征提取模型——局部线性嵌入网络(LLENet)。提出的LLENet首先为裁剪后的图像重建图像集。与以往随机初始化卷积核的深度卷积神经网络不同,我们直接以监督的方式从重构图像集中学习多阶段核。此外,我们还创建了一个改进的LLE来选择内核,从中我们可以获得最具代表性的特征映射。此外,为了更好地衡量这些核的贡献,提出了一种基于核欧几里得的距离。经过多尺度特征分析后,将特征表示送入线性分类器。在面部表情数据集(CK+)上的实验结果表明,该模型能够捕获大多数具有代表性的特征,从而改进了先前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信