Data-Driven Model Predictive Control for Skid-Steering Unmanned Ground Vehicles

L. Gentilini, D. Mengoli, S. Rossi, L. Marconi
{"title":"Data-Driven Model Predictive Control for Skid-Steering Unmanned Ground Vehicles","authors":"L. Gentilini, D. Mengoli, S. Rossi, L. Marconi","doi":"10.1109/MetroAgriFor55389.2022.9964544","DOIUrl":null,"url":null,"abstract":"Skid steering vehicles rely on tracks slipping to perform turning maneuvers. In this context, the estimation of the right amount of slip turns out to be significant to correctly perform precise movements. In a typical agricultural scenario, with rough terrain and narrow navigating spaces, a reliable slip estimation is crucial to perform safe motions. In this work, we propose a novel Gaussian Process approach to slip estimation in a tracked wheel robots by showing experimental results obtained from our prototype robotic platform.","PeriodicalId":374452,"journal":{"name":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAgriFor55389.2022.9964544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Skid steering vehicles rely on tracks slipping to perform turning maneuvers. In this context, the estimation of the right amount of slip turns out to be significant to correctly perform precise movements. In a typical agricultural scenario, with rough terrain and narrow navigating spaces, a reliable slip estimation is crucial to perform safe motions. In this work, we propose a novel Gaussian Process approach to slip estimation in a tracked wheel robots by showing experimental results obtained from our prototype robotic platform.
滑转向无人地面车辆数据驱动模型预测控制
防滑转向车辆依靠轨道滑动来执行转弯操作。在这种情况下,正确估计滑移量对于正确执行精确运动是非常重要的。在典型的农业场景中,崎岖的地形和狭窄的导航空间,可靠的滑动估计对于执行安全动作至关重要。在这项工作中,我们提出了一种新的高斯过程方法来估计履带式轮式机器人的滑移,并展示了从我们的原型机器人平台上获得的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信