A COMPUTER VISION-BASED APPROACH FOR STORAGE LOCATIONS OCCUPANCY DETECTION USING DEEP LEARNING

Łukasz Jeleń, M. Karkula, Dariusz Olearczuk
{"title":"A COMPUTER VISION-BASED APPROACH FOR STORAGE LOCATIONS OCCUPANCY DETECTION USING DEEP LEARNING","authors":"Łukasz Jeleń, M. Karkula, Dariusz Olearczuk","doi":"10.37904/clc.2022.4570","DOIUrl":null,"url":null,"abstract":"Increasing the efficiency of processes in warehouse facilities is now required in every industry. One of the important decision-making problems is the proper utilization of storage space. The paper presents research results on the application of architecture for storage location occupancy detection based on computer vision methods and deep learning models. The paper contains a detailed description of the developed solution and an estimation of the solution performance","PeriodicalId":352588,"journal":{"name":"CLC 2022 Conference Proeedings","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLC 2022 Conference Proeedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/clc.2022.4570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing the efficiency of processes in warehouse facilities is now required in every industry. One of the important decision-making problems is the proper utilization of storage space. The paper presents research results on the application of architecture for storage location occupancy detection based on computer vision methods and deep learning models. The paper contains a detailed description of the developed solution and an estimation of the solution performance
使用深度学习的基于计算机视觉的存储位置占用检测方法
现在每个行业都需要提高仓库设施流程的效率。存储空间的合理利用是一个重要的决策问题。本文介绍了基于计算机视觉方法和深度学习模型的仓库位置占用检测体系结构的研究成果。本文对开发的解决方案进行了详细描述,并对解决方案的性能进行了估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信