Real-Time Top-R Topic Detection on Twitter with Topic Hijack Filtering

K. Hayashi, Takanori Maehara, Masashi Toyoda, K. Kawarabayashi
{"title":"Real-Time Top-R Topic Detection on Twitter with Topic Hijack Filtering","authors":"K. Hayashi, Takanori Maehara, Masashi Toyoda, K. Kawarabayashi","doi":"10.1145/2783258.2783402","DOIUrl":null,"url":null,"abstract":"Twitter is a \"what's-happening-right-now\" tool that enables interested parties to follow thoughts and commentary of individual users in nearly real-time. While it is a valuable source of information for real-time topic detection and tracking, Twitter data are not clean because of noisy messages and users, which significantly diminish the reliability of obtained results. In this paper, we integrate both the extraction of meaningful topics and the filtering of messages over the Twitter stream. We develop a streaming algorithm for a sequence of document-frequency tables; our algorithm enables real-time monitoring of the top-10 topics from approximately 25% of all Twitter messages, while automatically filtering noisy and meaningless topics. We apply our proposed streaming algorithm to the Japanese Twitter stream and successfully demonstrate that, compared with other online nonnegative matrix factorization methods, our framework both tracks real-world events with high accuracy in terms of the perplexity and simultaneously eliminates irrelevant topics.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Twitter is a "what's-happening-right-now" tool that enables interested parties to follow thoughts and commentary of individual users in nearly real-time. While it is a valuable source of information for real-time topic detection and tracking, Twitter data are not clean because of noisy messages and users, which significantly diminish the reliability of obtained results. In this paper, we integrate both the extraction of meaningful topics and the filtering of messages over the Twitter stream. We develop a streaming algorithm for a sequence of document-frequency tables; our algorithm enables real-time monitoring of the top-10 topics from approximately 25% of all Twitter messages, while automatically filtering noisy and meaningless topics. We apply our proposed streaming algorithm to the Japanese Twitter stream and successfully demonstrate that, compared with other online nonnegative matrix factorization methods, our framework both tracks real-world events with high accuracy in terms of the perplexity and simultaneously eliminates irrelevant topics.
实时Top-R主题检测与主题劫持过滤
Twitter是一个“现在正在发生什么”的工具,它使感兴趣的各方能够几乎实时地跟踪单个用户的想法和评论。虽然它是实时主题检测和跟踪的宝贵信息来源,但由于消息和用户的噪声,Twitter数据并不干净,这大大降低了所获得结果的可靠性。在本文中,我们整合了有意义主题的提取和Twitter流上消息的过滤。我们为一系列文档频率表开发了一种流算法;我们的算法可以实时监控大约25%的Twitter消息中的前10个主题,同时自动过滤嘈杂和无意义的主题。我们将我们提出的流算法应用于日本Twitter流,并成功地证明,与其他在线非负矩阵分解方法相比,我们的框架在困惑度方面以高精度跟踪现实世界的事件,同时消除了不相关的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信