Optimal sampling in array-based image formation

Yun Gao, S. Reeves
{"title":"Optimal sampling in array-based image formation","authors":"Yun Gao, S. Reeves","doi":"10.1109/ICIP.2000.901063","DOIUrl":null,"url":null,"abstract":"In some types of imaging, the signal is strictly limited in one domain while sampling takes places in another. If sampling is done in a rectangular array pattern at sub-Nyquist density, the array must be dithered to sample the image at the Nyquist density in each dimension. However, the Nyquist density oversamples the image due to the nonrectangular support in the transform domain. We present an efficient algorithm for optimizing the dithering pattern so that the image can be reconstructed as reliably as possible from a periodic nonuniform set of samples, which can be obtained from a dithered rectangular-grid array. Taking into account the transform support of the image, we sequentially eliminate the least informative array recursively until the minimal number of arrays remain.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.901063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In some types of imaging, the signal is strictly limited in one domain while sampling takes places in another. If sampling is done in a rectangular array pattern at sub-Nyquist density, the array must be dithered to sample the image at the Nyquist density in each dimension. However, the Nyquist density oversamples the image due to the nonrectangular support in the transform domain. We present an efficient algorithm for optimizing the dithering pattern so that the image can be reconstructed as reliably as possible from a periodic nonuniform set of samples, which can be obtained from a dithered rectangular-grid array. Taking into account the transform support of the image, we sequentially eliminate the least informative array recursively until the minimal number of arrays remain.
基于阵列的图像生成中的最优采样
在某些类型的成像中,信号被严格限制在一个域中,而采样在另一个域中进行。如果在亚奈奎斯特密度下以矩形阵列模式进行采样,则阵列必须在每个维度上以奈奎斯特密度对图像进行采样。然而,由于变换域中的非矩形支持,奈奎斯特密度会对图像进行过采样。我们提出了一种优化抖动模式的有效算法,使得从抖动矩形网格阵列中获得的周期性非均匀样本集可以尽可能可靠地重建图像。考虑到图像的变换支持,我们依次递归地消除信息量最小的数组,直到保留的数组数量最少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信