Arrhythmia classification using RR intervals: Improvement with sinusoidal regression feature

Heike Leutheuser, Stefan Gradl, B. Eskofier, A. Tobola, N. Lang, L. Anneken, M. Arnold, S. Achenbach
{"title":"Arrhythmia classification using RR intervals: Improvement with sinusoidal regression feature","authors":"Heike Leutheuser, Stefan Gradl, B. Eskofier, A. Tobola, N. Lang, L. Anneken, M. Arnold, S. Achenbach","doi":"10.1109/BSN.2015.7299371","DOIUrl":null,"url":null,"abstract":"Far too many people are dying from stroke or other heart related diseases each year. Early detection of abnormal heart rhythm could trigger the timely presentation to the emergency department or outpatient unit. Smartphones are an integral part of everyone;s life and they form the ideal basis for mobile monitoring and real-time analysis of signals related to the human heart. In this work, we investigated the performance of arrhythmia classification systems using only features calculated from the time instances of individual heart beats. We built a sinusoidal model using N (N = 10, 15, 20) consecutive RR intervals to predict the (N+1)th RR interval. The integration of the innovative sinusoidal regression feature, together with the amplitude and phase of the proposed sinusoidal model, led to an increase in the mean class-dependent classification accuracies. Best mean class-dependent classification accuracies of 90% were achieved using a Naïve Bayes classifier. Well-performing realtime analysis arrhythmia classification algorithms using only the time instances of individual heart beats could have a tremendous impact in reducing healthcare costs and reducing the high number of deaths related to cardiovascular diseases.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Far too many people are dying from stroke or other heart related diseases each year. Early detection of abnormal heart rhythm could trigger the timely presentation to the emergency department or outpatient unit. Smartphones are an integral part of everyone;s life and they form the ideal basis for mobile monitoring and real-time analysis of signals related to the human heart. In this work, we investigated the performance of arrhythmia classification systems using only features calculated from the time instances of individual heart beats. We built a sinusoidal model using N (N = 10, 15, 20) consecutive RR intervals to predict the (N+1)th RR interval. The integration of the innovative sinusoidal regression feature, together with the amplitude and phase of the proposed sinusoidal model, led to an increase in the mean class-dependent classification accuracies. Best mean class-dependent classification accuracies of 90% were achieved using a Naïve Bayes classifier. Well-performing realtime analysis arrhythmia classification algorithms using only the time instances of individual heart beats could have a tremendous impact in reducing healthcare costs and reducing the high number of deaths related to cardiovascular diseases.
心律失常分类使用RR区间:改善与正弦回归特征
每年有太多的人死于中风或其他与心脏有关的疾病。早期发现心律异常可及时到急诊科或门诊就诊。智能手机是每个人生活中不可或缺的一部分,它们构成了移动监测和实时分析与人类心脏相关信号的理想基础。在这项工作中,我们研究了心律失常分类系统的性能,仅使用从个体心跳时间实例计算的特征。我们使用N (N = 10,15,20)个连续的RR区间建立了一个正弦模型来预测(N+1)个RR区间。将创新的正弦回归特征与所提出的正弦模型的振幅和相位相结合,可以提高平均类相关分类精度。使用Naïve贝叶斯分类器实现了90%的最佳平均类相关分类准确率。仅使用个体心跳时间实例的性能良好的实时分析心律失常分类算法可以在降低医疗成本和减少与心血管疾病相关的大量死亡方面产生巨大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信