{"title":"A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip","authors":"Wooyoung Jang, D. Pan","doi":"10.1145/2209291.2209299","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel and global A3MAP (Architecture-Aware Analytic Mapping) algorithm applied to NoC (Networks-on-Chip) based MPSoC (Multi-Processor System-on-Chip) not only with homogeneous cores on regular mesh architecture as done by most previous mapping algorithms but also with heterogeneous cores on irregular mesh or custom architecture. As a main contribution, we develop a simple yet efficient interconnection matrix that models any task graph and network. Then, task mapping problem is exactly formulated to an MIQP (Mixed Integer Quadratic Programming). Since MIQP is NP-hard [15], we propose two effective heuristics, a successive relaxation algorithm and a genetic algorithm. Experimental results show that A3MAP by the successive relaxation algorithm reduces an amount of traffic up to 5.7%, 16.1% and 7.3% on average in regular mesh, irregular mesh and custom network, respectively, compared to the previous state-of-the-art work [1]. A3MAP by the genetic algorithm reduces more traffic up to 8.8%, 29.4% and 16.1 % on average than [1] in regular mesh, irregular mesh and custom network, respectively even if its runtime is longer.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2209291.2209299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74
Abstract
In this paper, we propose a novel and global A3MAP (Architecture-Aware Analytic Mapping) algorithm applied to NoC (Networks-on-Chip) based MPSoC (Multi-Processor System-on-Chip) not only with homogeneous cores on regular mesh architecture as done by most previous mapping algorithms but also with heterogeneous cores on irregular mesh or custom architecture. As a main contribution, we develop a simple yet efficient interconnection matrix that models any task graph and network. Then, task mapping problem is exactly formulated to an MIQP (Mixed Integer Quadratic Programming). Since MIQP is NP-hard [15], we propose two effective heuristics, a successive relaxation algorithm and a genetic algorithm. Experimental results show that A3MAP by the successive relaxation algorithm reduces an amount of traffic up to 5.7%, 16.1% and 7.3% on average in regular mesh, irregular mesh and custom network, respectively, compared to the previous state-of-the-art work [1]. A3MAP by the genetic algorithm reduces more traffic up to 8.8%, 29.4% and 16.1 % on average than [1] in regular mesh, irregular mesh and custom network, respectively even if its runtime is longer.