Photometric Stereo Using Constrained Bivariate Regression for General Isotropic Surfaces

Satoshi Ikehata, K. Aizawa
{"title":"Photometric Stereo Using Constrained Bivariate Regression for General Isotropic Surfaces","authors":"Satoshi Ikehata, K. Aizawa","doi":"10.1109/CVPR.2014.280","DOIUrl":null,"url":null,"abstract":"This paper presents a photometric stereo method that is purely pixelwise and handles general isotropic surfaces in a stable manner. Following the recently proposed sum-of-lobes representation of the isotropic reflectance function, we constructed a constrained bivariate regression problem where the regression function is approximated by smooth, bivariate Bernstein polynomials. The unknown normal vector was separated from the unknown reflectance function by considering the inverse representation of the image formation process, and then we could accurately compute the unknown surface normals by solving a simple and efficient quadratic programming problem. Extensive evaluations that showed the state-of-the-art performance using both synthetic and real-world images were performed.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

This paper presents a photometric stereo method that is purely pixelwise and handles general isotropic surfaces in a stable manner. Following the recently proposed sum-of-lobes representation of the isotropic reflectance function, we constructed a constrained bivariate regression problem where the regression function is approximated by smooth, bivariate Bernstein polynomials. The unknown normal vector was separated from the unknown reflectance function by considering the inverse representation of the image formation process, and then we could accurately compute the unknown surface normals by solving a simple and efficient quadratic programming problem. Extensive evaluations that showed the state-of-the-art performance using both synthetic and real-world images were performed.
一般各向同性表面的约束二元回归光度立体
本文提出了一种纯像素立体测光方法,并以稳定的方式处理一般各向同性表面。根据最近提出的各向同性反射函数的叶状和表示,我们构造了一个约束的二元回归问题,其中回归函数由光滑的二元伯恩斯坦多项式近似。通过考虑图像形成过程的逆表示,将未知的表面法向量与未知的反射函数分离,然后通过求解一个简单高效的二次规划问题,精确地计算出未知的表面法向量。使用合成图像和真实图像进行了广泛的评估,显示了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信