The state complexity of trellis diagrams for a class of generalized concatenated codes

T. Fujiwara, T. Kasami, R. Morelos-Zaragoza, Shu Lin
{"title":"The state complexity of trellis diagrams for a class of generalized concatenated codes","authors":"T. Fujiwara, T. Kasami, R. Morelos-Zaragoza, Shu Lin","doi":"10.1109/ISIT.1994.395086","DOIUrl":null,"url":null,"abstract":"We discuss the state complexity of trellis diagrams for a class of generalized concatenated codes. The maximum number of states in the 64-section minimal trellis diagram for all the extended BCH codes of length 64 which are permuted by using the bases shown previously by Kasami et al. (1993), are the same as those obtained by Vardy and Be'ery (1993), where bit orderings were found by using DS structure and computer search. We construct several decomposable codes for which a multistage decoding up to the minimum distance can be employed. The dimensions of constructed codes are 47, 43 and 24 for length 63, and 52 and 32 for length 72. We also construct codes of length 64 as shortened codes of the codes with length 72.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.395086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We discuss the state complexity of trellis diagrams for a class of generalized concatenated codes. The maximum number of states in the 64-section minimal trellis diagram for all the extended BCH codes of length 64 which are permuted by using the bases shown previously by Kasami et al. (1993), are the same as those obtained by Vardy and Be'ery (1993), where bit orderings were found by using DS structure and computer search. We construct several decomposable codes for which a multistage decoding up to the minimum distance can be employed. The dimensions of constructed codes are 47, 43 and 24 for length 63, and 52 and 32 for length 72. We also construct codes of length 64 as shortened codes of the codes with length 72.<>
一类广义连接码格图的状态复杂度
讨论了一类广义连接码格图的状态复杂度。所有长度为64的扩展BCH码,使用Kasami等人(1993)先前所示的碱基进行排列,其64段最小格图中的最大状态数与Vardy和Be'ery(1993)使用DS结构和计算机搜索找到位顺序的结果相同。我们构造了几个可分解的码,对于这些码,可以采用多级解码达到最小距离。长度为63的编码尺寸分别为47、43和24,长度为72的编码尺寸分别为52和32。我们还构造了长度为64的码,作为长度为72,>的码的缩短码
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信