Balance Programming between Target and Chance with Application in Building Optimal Bidding Strategies for Generation Companies

G. Lu, F. Wen, X. Zhao, C. Chung, K. Wong
{"title":"Balance Programming between Target and Chance with Application in Building Optimal Bidding Strategies for Generation Companies","authors":"G. Lu, F. Wen, X. Zhao, C. Chung, K. Wong","doi":"10.1109/ISAP.2007.4441639","DOIUrl":null,"url":null,"abstract":"Stochastic problems existing in many research domains could be solved through three kinds of methods viz. expected value model (EVM), chance-constrained programming (CCP), and dependent chance programming (DCP). However, these methods, sometimes, give different or even contrary results when dealing with the same real world problems. This paper proposes a new stochastic programming method, termed as balance programming between target and chance, based on the concept of effective decision frontier curve, which can solve the stochastic problems in a more rational, flexible, and applicable manner, and can diminish conflicts of the three above-mentioned methods. The effectiveness of the proposed method is demonstrated by building optimal bidding strategies for generation companies with risk management in the electricity market environment. A genetic algorithm with Monte Carlo simulation is employed to solve the programming model.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic problems existing in many research domains could be solved through three kinds of methods viz. expected value model (EVM), chance-constrained programming (CCP), and dependent chance programming (DCP). However, these methods, sometimes, give different or even contrary results when dealing with the same real world problems. This paper proposes a new stochastic programming method, termed as balance programming between target and chance, based on the concept of effective decision frontier curve, which can solve the stochastic problems in a more rational, flexible, and applicable manner, and can diminish conflicts of the three above-mentioned methods. The effectiveness of the proposed method is demonstrated by building optimal bidding strategies for generation companies with risk management in the electricity market environment. A genetic algorithm with Monte Carlo simulation is employed to solve the programming model.
目标与机会平衡规划及其在发电公司最优竞价策略构建中的应用
在许多研究领域中存在的随机问题可以通过期望值模型(EVM)、机会约束规划(CCP)和相关机会规划(DCP)三种方法来解决。然而,这些方法在处理相同的现实问题时,有时会给出不同甚至相反的结果。本文基于有效决策前沿曲线的概念,提出了一种新的随机规划方法,即目标与机会平衡规划方法,该方法可以更合理、更灵活、更适用地解决随机问题,并且可以减少上述三种方法的冲突。通过构建电力市场环境下具有风险管理的发电公司最优竞价策略,验证了该方法的有效性。采用蒙特卡罗模拟遗传算法求解规划模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信