Multi-Channel FLANN Adaptive Filter for Speckle & Impulse Noise Elimination from Color Doppler Ultrasound Images

Manish Kumar, S. Jangir, S. Mishra, S. K. Choubey, D. K. Choubey
{"title":"Multi-Channel FLANN Adaptive Filter for Speckle & Impulse Noise Elimination from Color Doppler Ultrasound Images","authors":"Manish Kumar, S. Jangir, S. Mishra, S. K. Choubey, D. K. Choubey","doi":"10.1109/ICONC345789.2020.9117288","DOIUrl":null,"url":null,"abstract":"The conventional fixed filters cannot be employed for removing the mixed noise of Color Doppler Ultrasound (CDUS) images because it affects the features of the image awkwardly. Consequently, identifying an internal blockage or hemorrhage of the patient become arduous in such conditions. Hence, the evolutionary multi-channel Functional Link Artificial Neural Network (M-FLANN) has been proposed to get rid of Speckle noise from the CDUS images. In this paper, the performance of the M-FLANN and other five competitive filters is evaluated in terms of qualitative and quantitative measures.","PeriodicalId":155813,"journal":{"name":"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONC345789.2020.9117288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The conventional fixed filters cannot be employed for removing the mixed noise of Color Doppler Ultrasound (CDUS) images because it affects the features of the image awkwardly. Consequently, identifying an internal blockage or hemorrhage of the patient become arduous in such conditions. Hence, the evolutionary multi-channel Functional Link Artificial Neural Network (M-FLANN) has been proposed to get rid of Speckle noise from the CDUS images. In this paper, the performance of the M-FLANN and other five competitive filters is evaluated in terms of qualitative and quantitative measures.
多通道FLANN自适应滤波器用于彩色多普勒超声图像的斑点和脉冲噪声消除
彩色多普勒超声(CDUS)图像的混合噪声对图像特征的影响较大,传统的固定滤波器无法有效去除混合噪声。因此,在这种情况下,识别患者的内部阻塞或出血变得困难。为此,提出了一种进化多通道功能链路人工神经网络(M-FLANN)来去除CDUS图像中的斑点噪声。本文从定性和定量两方面对M-FLANN和其他五种竞争滤波器的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信