Human emotion recognition based on active appearance model and semi-supervised fuzzy C-means

D. Liliana, M. R. Widyanto, T. Basaruddin
{"title":"Human emotion recognition based on active appearance model and semi-supervised fuzzy C-means","authors":"D. Liliana, M. R. Widyanto, T. Basaruddin","doi":"10.1109/ICACSIS.2016.7872744","DOIUrl":null,"url":null,"abstract":"Human emotion recognition is an emerging research area in the field of social signal processing. Facial expression is an important means to detect human emotion. The problem is some facial expressions represent similar emotions. Thus, the recognition must consider the ambiguity in the way human expresses emotions through face. Existing methods do not take into account the level of expression's ambiguity. In our research, we specify face points and display the degree of fuzzy cluster on eight face emotions, namely anger, contempt, disgust, happy, surprise, sadness, fear, and neutral. The proposed methods are based on Active Appearance Model (AAM) and semi-supervised Fuzzy C-means (FCM). We tested the system on Cohn Kanade+ dataset of facial expression which provided eight classes of human emotion. Our methods gain an average accuracy rate of 80.71% and surpass the existing Fuzzy Inference System.","PeriodicalId":267924,"journal":{"name":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2016.7872744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Human emotion recognition is an emerging research area in the field of social signal processing. Facial expression is an important means to detect human emotion. The problem is some facial expressions represent similar emotions. Thus, the recognition must consider the ambiguity in the way human expresses emotions through face. Existing methods do not take into account the level of expression's ambiguity. In our research, we specify face points and display the degree of fuzzy cluster on eight face emotions, namely anger, contempt, disgust, happy, surprise, sadness, fear, and neutral. The proposed methods are based on Active Appearance Model (AAM) and semi-supervised Fuzzy C-means (FCM). We tested the system on Cohn Kanade+ dataset of facial expression which provided eight classes of human emotion. Our methods gain an average accuracy rate of 80.71% and surpass the existing Fuzzy Inference System.
基于主动外观模型和半监督模糊c均值的人类情感识别
人类情绪识别是社会信号处理领域的一个新兴研究领域。面部表情是检测人类情感的重要手段。问题是一些面部表情代表着相似的情绪。因此,人脸识别必须考虑到人类面部表情表达方式的模糊性。现有的方法没有考虑到表达式的歧义程度。在我们的研究中,我们指定了面部点,并显示了八种面部情绪的模糊聚类程度,即愤怒、蔑视、厌恶、快乐、惊讶、悲伤、恐惧和中性。提出的方法是基于主动外观模型(AAM)和半监督模糊c均值(FCM)。我们在Cohn Kanade+面部表情数据集上测试了该系统,该数据集提供了八类人类情绪。我们的方法平均准确率达到80.71%,超过了现有的模糊推理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信