James Poon, Yunduan Cui, J. V. Miró, Takamitsu Matsubara
{"title":"Learning Mobility Aid Assistance via Decoupled Observation Models","authors":"James Poon, Yunduan Cui, J. V. Miró, Takamitsu Matsubara","doi":"10.1109/ICARCV.2018.8581375","DOIUrl":null,"url":null,"abstract":"This paper presents an active assistance framework for mobility systems, such as Power Mobility Devices (PMD), with the distinctive goal of being able to operate within a local moving window, as opposed to the common reliance upon persistent global environments and objectives. Demonstration data from able experts driving a simulated mobility aid in a representative indoor setting is used off-line to build behavioral models of navigation postulated separately upon user joystick inputs and on-board sensor data. These models are built respectively via Gaussian Processes for the joystick signals, and a Deep Convolutional Neural Network for the sensor data; in this case a planar LIDAR. Their combined outputs form a continuous distribution of estimated traversal likelihood within the user's immediate space, allowing for real-time stochastic optimal path planning to guide a user to its intended local destination. Moreover, the computational efficiency of the decoupled models permits rapid replanning on-the-fly for a smooth assistive action. On-line and off-line evaluations substantiate the advantages of the framework in generalising intelligent navigational assistance, of particular relevance for users who experience difficulty in safe mobility.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an active assistance framework for mobility systems, such as Power Mobility Devices (PMD), with the distinctive goal of being able to operate within a local moving window, as opposed to the common reliance upon persistent global environments and objectives. Demonstration data from able experts driving a simulated mobility aid in a representative indoor setting is used off-line to build behavioral models of navigation postulated separately upon user joystick inputs and on-board sensor data. These models are built respectively via Gaussian Processes for the joystick signals, and a Deep Convolutional Neural Network for the sensor data; in this case a planar LIDAR. Their combined outputs form a continuous distribution of estimated traversal likelihood within the user's immediate space, allowing for real-time stochastic optimal path planning to guide a user to its intended local destination. Moreover, the computational efficiency of the decoupled models permits rapid replanning on-the-fly for a smooth assistive action. On-line and off-line evaluations substantiate the advantages of the framework in generalising intelligent navigational assistance, of particular relevance for users who experience difficulty in safe mobility.