G. Tochon, Delphine Pauwels, M. Mura, J. Chanussot
{"title":"Unmixing-based gas plume tracking in LWIR hyperspectral video sequences","authors":"G. Tochon, Delphine Pauwels, M. Mura, J. Chanussot","doi":"10.1109/WHISPERS.2016.8071686","DOIUrl":null,"url":null,"abstract":"It is now possible to collect hyperspectral video sequences (HVS) at a near real-time frame rate. The wealth of spectral, spatial and temporal information of those sequences is particularly appealing for chemical gas plume tracking. Existing state-of-the-art methods for such applications however produce only a binary information regarding the position and shape of the gas plume in the HVS. Here, we introduce a novel method relying on spectral unmixing considerations to perform chemical gas plume tracking, which provides information related to the gas plume concentration in addition to its spatial localization. The proposed approach is validated and compared with three state-of-the-art methods on a real HVS.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
It is now possible to collect hyperspectral video sequences (HVS) at a near real-time frame rate. The wealth of spectral, spatial and temporal information of those sequences is particularly appealing for chemical gas plume tracking. Existing state-of-the-art methods for such applications however produce only a binary information regarding the position and shape of the gas plume in the HVS. Here, we introduce a novel method relying on spectral unmixing considerations to perform chemical gas plume tracking, which provides information related to the gas plume concentration in addition to its spatial localization. The proposed approach is validated and compared with three state-of-the-art methods on a real HVS.