Deep Learning-Based Nuclei Segmentation of Cleared Brain Tissue

Pooya Khorrami, K. Brady, Mark Hernandez, L. Gjesteby, S. Burke, Damon G. Lamb, Matthew A. Melton, K. Otto, L. Brattain
{"title":"Deep Learning-Based Nuclei Segmentation of Cleared Brain Tissue","authors":"Pooya Khorrami, K. Brady, Mark Hernandez, L. Gjesteby, S. Burke, Damon G. Lamb, Matthew A. Melton, K. Otto, L. Brattain","doi":"10.1109/HPEC.2019.8916435","DOIUrl":null,"url":null,"abstract":"We present a deep learning approach for nuclei segmentation at scale. Our algorithm aims to address the challenge of segmentation in dense scenes with limited annotated data available. Annotation in this domain is highly manual in nature, requiring time-consuming markup of the neuron and extensive expertise, and often results in errors. For these reasons, the approach under consideration employs methods adopted from transfer learning. This approach can also be extended to segment other components of the neurons.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a deep learning approach for nuclei segmentation at scale. Our algorithm aims to address the challenge of segmentation in dense scenes with limited annotated data available. Annotation in this domain is highly manual in nature, requiring time-consuming markup of the neuron and extensive expertise, and often results in errors. For these reasons, the approach under consideration employs methods adopted from transfer learning. This approach can also be extended to segment other components of the neurons.
基于深度学习的清除脑组织核分割
我们提出了一种大规模核分割的深度学习方法。我们的算法旨在解决具有有限注释数据的密集场景中的分割挑战。该领域的注释本质上是高度手动的,需要耗费时间的神经元标记和广泛的专业知识,并且经常导致错误。基于这些原因,本文所考虑的方法采用了迁移学习的方法。这种方法也可以扩展到分割神经元的其他组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信