Efficient finite abstraction of mixed monotone systems

S. Coogan, M. Arcak
{"title":"Efficient finite abstraction of mixed monotone systems","authors":"S. Coogan, M. Arcak","doi":"10.1145/2728606.2728607","DOIUrl":null,"url":null,"abstract":"We present an efficient computational procedure for finite abstraction of discrete-time mixed monotone systems by considering a rectangular partition of the state space. Mixed monotone systems are decomposable into increasing and decreasing components, and significantly generalize the well known class of monotone systems. We tightly overapproximate the one-step reachable set from a box of initial conditions by computing a decomposition function at only two points, regardless of the dimension of the state space. We apply our results to verify the dynamical behavior of a model for insect population dynamics and to synthesize a signaling strategy for a traffic network.","PeriodicalId":377654,"journal":{"name":"Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2728606.2728607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

Abstract

We present an efficient computational procedure for finite abstraction of discrete-time mixed monotone systems by considering a rectangular partition of the state space. Mixed monotone systems are decomposable into increasing and decreasing components, and significantly generalize the well known class of monotone systems. We tightly overapproximate the one-step reachable set from a box of initial conditions by computing a decomposition function at only two points, regardless of the dimension of the state space. We apply our results to verify the dynamical behavior of a model for insect population dynamics and to synthesize a signaling strategy for a traffic network.
混合单调系统的有效有限抽象
考虑状态空间的矩形划分,给出了离散时间混合单调系统有限抽象的有效计算过程。混合单调系统可分解为递增和递减分量,对单调系统进行了广泛的推广。无论状态空间的维数如何,我们通过仅在两点上计算分解函数,从初始条件盒中严密地过逼近一步可达集。我们应用我们的结果来验证昆虫种群动态模型的动态行为,并合成交通网络的信号策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信