MobiRNN: Efficient Recurrent Neural Network Execution on Mobile GPU

EMDL '17 Pub Date : 2017-06-03 DOI:10.1145/3089801.3089804
Qingqing Cao, Niranjan Balasubramanian, A. Balasubramanian
{"title":"MobiRNN: Efficient Recurrent Neural Network Execution on Mobile GPU","authors":"Qingqing Cao, Niranjan Balasubramanian, A. Balasubramanian","doi":"10.1145/3089801.3089804","DOIUrl":null,"url":null,"abstract":"In this paper, we explore optimizations to run Recurrent Neural Network (RNN) models locally on mobile devices. RNN models are widely used for Natural Language Processing, Machine translation, and other tasks. However, existing mobile applications that use RNN models do so on the cloud. To address privacy and efficiency concerns, we show how RNN models can be run locally on mobile devices. Existing work on porting deep learning models to mobile devices focus on Convolution Neural Networks (CNNs) and cannot be applied directly to RNN models. In response, we present MobiRNN, a mobile-specific optimization framework that implements GPU offloading specifically for mobile GPUs. Evaluations using an RNN model for activity recognition shows that MobiRNN does significantly decrease the latency of running RNN models on phones.","PeriodicalId":125567,"journal":{"name":"EMDL '17","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMDL '17","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3089801.3089804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

In this paper, we explore optimizations to run Recurrent Neural Network (RNN) models locally on mobile devices. RNN models are widely used for Natural Language Processing, Machine translation, and other tasks. However, existing mobile applications that use RNN models do so on the cloud. To address privacy and efficiency concerns, we show how RNN models can be run locally on mobile devices. Existing work on porting deep learning models to mobile devices focus on Convolution Neural Networks (CNNs) and cannot be applied directly to RNN models. In response, we present MobiRNN, a mobile-specific optimization framework that implements GPU offloading specifically for mobile GPUs. Evaluations using an RNN model for activity recognition shows that MobiRNN does significantly decrease the latency of running RNN models on phones.
MobiRNN:高效递归神经网络在移动GPU上的执行
在本文中,我们探索了在移动设备上本地运行循环神经网络(RNN)模型的优化。RNN模型广泛用于自然语言处理、机器翻译和其他任务。然而,现有的使用RNN模型的移动应用程序是在云上运行的。为了解决隐私和效率问题,我们展示了如何在移动设备上本地运行RNN模型。将深度学习模型移植到移动设备上的现有工作主要集中在卷积神经网络(cnn)上,不能直接应用于RNN模型。作为回应,我们提出了MobiRNN,一个特定于移动设备的优化框架,它实现了专门针对移动GPU的GPU卸载。使用RNN模型进行活动识别的评估表明,MobiRNN确实显著降低了在手机上运行RNN模型的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信