Multi-label text classification via hierarchical Transformer-CNN

Junzhe Li, Chenglong Wang, Xiaohan Fang, Kai Yu, Jinye Zhao, Xi Wu, Jibing Gong
{"title":"Multi-label text classification via hierarchical Transformer-CNN","authors":"Junzhe Li, Chenglong Wang, Xiaohan Fang, Kai Yu, Jinye Zhao, Xi Wu, Jibing Gong","doi":"10.1145/3529836.3529912","DOIUrl":null,"url":null,"abstract":"Traditional multi-label text classification methods, especially deep learning, have achieved remarkable results, but most of these methods use the word2vec technique to represent continuous text information, which fails to fully capture the semantic information of the text. To solve this problem, we built a hierarchical Transformer-CNN model and applied it in multi-label classification. Taking into account the characteristics of natural language, a hierarchical Transformer-CNN model is constructed to capture the semantic information of different levels of the text at the word and sentence levels using multi-headed self-attention mechanism, and a sentence convolutional neural network was used to extract key semantic features. For the hierarchical Transformer-CNN model we proposed, sufficient experiments have been conducted on the RCV1 and AAPD data sets to verify the model's effectiveness.","PeriodicalId":285191,"journal":{"name":"2022 14th International Conference on Machine Learning and Computing (ICMLC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Machine Learning and Computing (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529836.3529912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traditional multi-label text classification methods, especially deep learning, have achieved remarkable results, but most of these methods use the word2vec technique to represent continuous text information, which fails to fully capture the semantic information of the text. To solve this problem, we built a hierarchical Transformer-CNN model and applied it in multi-label classification. Taking into account the characteristics of natural language, a hierarchical Transformer-CNN model is constructed to capture the semantic information of different levels of the text at the word and sentence levels using multi-headed self-attention mechanism, and a sentence convolutional neural network was used to extract key semantic features. For the hierarchical Transformer-CNN model we proposed, sufficient experiments have been conducted on the RCV1 and AAPD data sets to verify the model's effectiveness.
基于层次变换- cnn的多标签文本分类
传统的多标签文本分类方法,特别是深度学习,已经取得了显著的效果,但这些方法大多使用word2vec技术来表示连续文本信息,未能充分捕捉文本的语义信息。为了解决这一问题,我们建立了一种递阶的Transformer-CNN模型,并将其应用于多标签分类中。考虑到自然语言的特点,利用多头自注意机制,构建了一种分层的Transformer-CNN模型,在词和句子层面捕捉文本不同层次的语义信息,并利用句子卷积神经网络提取关键语义特征。对于我们提出的分层Transformer-CNN模型,已经在RCV1和AAPD数据集上进行了足够的实验来验证模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信