Evaluation of architecture-aware optimization techniques for Convolutional Neural Networks

Raúl Marichal, Guillermo Toyos, Ernesto Dufrechu, P. Ezzatti
{"title":"Evaluation of architecture-aware optimization techniques for Convolutional Neural Networks","authors":"Raúl Marichal, Guillermo Toyos, Ernesto Dufrechu, P. Ezzatti","doi":"10.1109/PDP59025.2023.00036","DOIUrl":null,"url":null,"abstract":"The growing need to perform Neural network inference with low latency is giving place to a broad spectrum of heterogeneous devices with deep learning capabilities. Therefore, obtaining the best performance from each device and choosing the most suitable platform for a given problem has become challenging. This paper evaluates multiple inference platforms using architecture-aware optimizations for convolutional neural networks. Specifically, we use TensorRT and OpenVINO frameworks for hardware optimizations on top of the platform-aware NetAdapt algorithm. The experimental evaluation shows that on MobileNet and AlexNet, using NetAdapt with TensorRT or Open-VINO can improve latency up to 10 x and 5.3 x, respectively. Moreover, a throughput test using different batch sizes showed variable performance improvement on the different devices. Discussing the experimental results can guide the selection of devices and optimizations for different AI solutions.","PeriodicalId":153500,"journal":{"name":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP59025.2023.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The growing need to perform Neural network inference with low latency is giving place to a broad spectrum of heterogeneous devices with deep learning capabilities. Therefore, obtaining the best performance from each device and choosing the most suitable platform for a given problem has become challenging. This paper evaluates multiple inference platforms using architecture-aware optimizations for convolutional neural networks. Specifically, we use TensorRT and OpenVINO frameworks for hardware optimizations on top of the platform-aware NetAdapt algorithm. The experimental evaluation shows that on MobileNet and AlexNet, using NetAdapt with TensorRT or Open-VINO can improve latency up to 10 x and 5.3 x, respectively. Moreover, a throughput test using different batch sizes showed variable performance improvement on the different devices. Discussing the experimental results can guide the selection of devices and optimizations for different AI solutions.
卷积神经网络体系结构感知优化技术的评价
对低延迟执行神经网络推理的需求日益增长,这让位于具有深度学习能力的广谱异构设备。因此,从每个设备中获得最佳性能并为给定问题选择最合适的平台已成为一项挑战。本文评估了使用结构感知优化卷积神经网络的多个推理平台。具体来说,我们使用TensorRT和OpenVINO框架在平台感知NetAdapt算法之上进行硬件优化。实验评估表明,在MobileNet和AlexNet上,使用NetAdapt与TensorRT或Open-VINO可以分别将延迟提高10倍和5.3倍。此外,使用不同批处理大小的吞吐量测试显示,在不同设备上的性能改进是不同的。讨论实验结果可以指导不同人工智能解决方案的设备选择和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信