Radiation effects on Brillouin-based sensors: temperature and strain discrimination capability using telecom-grade optical fibers

J. Perrot, A. Morana, E. Marin, Y. Ouerdane, A. Boukenter, J. Bertrand, S. Girard
{"title":"Radiation effects on Brillouin-based sensors: temperature and strain discrimination capability using telecom-grade optical fibers","authors":"J. Perrot, A. Morana, E. Marin, Y. Ouerdane, A. Boukenter, J. Bertrand, S. Girard","doi":"10.1117/12.2678636","DOIUrl":null,"url":null,"abstract":"We investigate the performances accessible in terms of strain and temperature discrimination using Brillouin Optical Time Domain Analysis combined with the LEAF fiber from Corning, AllWave fiber (AW) from Lucent and TrueWave (TW) fiber from OFS when exposed to γ rays and X-rays up to 1 MGy(SiO2). All these fibers present a multipeak Brillouin Gain Spectrum (BGS) with unique dependencies of each of its peaks over temperature (T) and strain (ε). The evolution of their T and ε discrimination capability is investigated to evaluate how radiation affects the sensing performances. High dose irradiation changes the sensor performances through two main effects. First, the Radiation Induced Attenuation (RIA) limits the BGS amplitude, the sensing range and discrimination capability techniques relying on BGS amplitude. Second, radiations modify the Brillouin scattering properties by slightly changing the refractive indices and the acoustic velocities of the silica-based leading to small changes in T and ε dependencies and also to a limited Radiation Induced Brillouin Frequency Shift (RI-BFS) that causes a direct measurement error. Results exhibit an overall decrease of T and ε uncertainties through discrimination process after 1 MGy reaching 0.9°C and 29 με for 0.1 MHz frequency uncertainty for sensors based on the LEAF fiber.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Optical Fibre Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2678636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the performances accessible in terms of strain and temperature discrimination using Brillouin Optical Time Domain Analysis combined with the LEAF fiber from Corning, AllWave fiber (AW) from Lucent and TrueWave (TW) fiber from OFS when exposed to γ rays and X-rays up to 1 MGy(SiO2). All these fibers present a multipeak Brillouin Gain Spectrum (BGS) with unique dependencies of each of its peaks over temperature (T) and strain (ε). The evolution of their T and ε discrimination capability is investigated to evaluate how radiation affects the sensing performances. High dose irradiation changes the sensor performances through two main effects. First, the Radiation Induced Attenuation (RIA) limits the BGS amplitude, the sensing range and discrimination capability techniques relying on BGS amplitude. Second, radiations modify the Brillouin scattering properties by slightly changing the refractive indices and the acoustic velocities of the silica-based leading to small changes in T and ε dependencies and also to a limited Radiation Induced Brillouin Frequency Shift (RI-BFS) that causes a direct measurement error. Results exhibit an overall decrease of T and ε uncertainties through discrimination process after 1 MGy reaching 0.9°C and 29 με for 0.1 MHz frequency uncertainty for sensors based on the LEAF fiber.
辐射对基于布里渊的传感器的影响:使用电信级光纤的温度和应变识别能力
当暴露在高达1 MGy(SiO2)的γ射线和x射线下时,我们使用布里频光时域分析结合康宁的LEAF光纤、朗讯的AllWave光纤(AW)和OFS的TrueWave光纤(TW),研究了在应变和温度识别方面的性能。所有这些光纤都呈现出多峰布里渊增益谱(BGS),其每个峰对温度(T)和应变(ε)具有独特的依赖性。研究了它们的T和ε识别能力的演变,以评估辐射对传感性能的影响。高剂量辐照通过两个主要效应改变传感器的性能。首先,辐射诱发衰减(RIA)限制了BGS振幅,限制了基于BGS振幅的传感范围和判别能力技术。其次,辐射通过轻微改变硅基材料的折射率和声速来改变布里渊散射特性,从而导致T和ε依赖关系的微小变化,并且导致有限的辐射诱导布里渊频移(RI-BFS),从而导致直接测量误差。结果表明,当1 MGy达到0.9°C时,基于LEAF光纤的传感器的T和ε不确定度通过识别过程总体降低,0.1 MHz频率不确定度为29 με。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信