On a least absolute deviations estimator of a multivariate convex function

Eunji Lim, Yao Luo
{"title":"On a least absolute deviations estimator of a multivariate convex function","authors":"Eunji Lim, Yao Luo","doi":"10.1109/WSC.2014.7020112","DOIUrl":null,"url":null,"abstract":"When estimating a performance measure f* of a complex system from noisy data, the underlying function f* is often known to be convex. In this case, one often uses convexity to better estimate f* by fitting a convex function to data. The traditional way of fitting a convex function to data, which is done by computing a convex function minimizing the sum of squares, takes too long to compute. It also runs into an “out of memory” issue for large-scale datasets. In this paper, we propose a computationally efficient way of fitting a convex function by computing the best fit minimizing the sum of absolute deviations. The proposed least absolute deviations estimator can be computed more efficiently via a linear program than the traditional least squares estimator. We illustrate the efficiency of the proposed estimator through several examples.","PeriodicalId":446873,"journal":{"name":"Proceedings of the Winter Simulation Conference 2014","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Winter Simulation Conference 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2014.7020112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When estimating a performance measure f* of a complex system from noisy data, the underlying function f* is often known to be convex. In this case, one often uses convexity to better estimate f* by fitting a convex function to data. The traditional way of fitting a convex function to data, which is done by computing a convex function minimizing the sum of squares, takes too long to compute. It also runs into an “out of memory” issue for large-scale datasets. In this paper, we propose a computationally efficient way of fitting a convex function by computing the best fit minimizing the sum of absolute deviations. The proposed least absolute deviations estimator can be computed more efficiently via a linear program than the traditional least squares estimator. We illustrate the efficiency of the proposed estimator through several examples.
多元凸函数的最小绝对偏差估计
当从噪声数据估计复杂系统的性能度量f*时,底层函数f*通常被认为是凸的。在这种情况下,人们通常通过对数据拟合凸函数来使用凸性来更好地估计f*。传统的凸函数拟合数据的方法是通过计算最小化平方和的凸函数来完成的,计算时间太长。对于大规模数据集,它也会遇到“内存不足”的问题。在本文中,我们提出了一种计算效率高的方法来拟合凸函数,通过计算最佳拟合最小化绝对偏差的总和。与传统的最小二乘估计相比,本文提出的最小绝对偏差估计可以通过线性程序更有效地计算。通过几个算例说明了所提估计器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信