{"title":"Regulation of viral and cellular RNA turnover in cells infected by eukaryotic viruses including HIV-1.","authors":"M G Katze, M B Agy","doi":"10.1159/000468769","DOIUrl":null,"url":null,"abstract":"<p><p>The following reviews the role of mRNA stability in the regulation of both viral and cellular gene expression in virus-infected cells. Indeed, several eukaryotic viruses, including the human immunodeficiency virus, HIV-1, regulate cellular protein synthesis via such control mechanisms. The following systems will be discussed: (i) the degradation of viral and cellular mRNAs in cells infected by herpes simplex virus (HSV) and advances made using the HSV virion host shutoff mutant; (ii) the degradation of viral and cellular mRNA and ribosomal RNA in cells infected by vaccinia virus and the possible role of the oligoadenylate synthetase-RNase L pathways; (iii) the turnover of RNAs in cells infected by encephalomyocarditis virus, reovirus, and La Crosse virus; and finally (iv) recent studies from our laboratory on the degradation of cellular mRNAs in cells infected by HIV-1.</p>","PeriodicalId":11933,"journal":{"name":"Enzyme","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000468769","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000468769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
The following reviews the role of mRNA stability in the regulation of both viral and cellular gene expression in virus-infected cells. Indeed, several eukaryotic viruses, including the human immunodeficiency virus, HIV-1, regulate cellular protein synthesis via such control mechanisms. The following systems will be discussed: (i) the degradation of viral and cellular mRNAs in cells infected by herpes simplex virus (HSV) and advances made using the HSV virion host shutoff mutant; (ii) the degradation of viral and cellular mRNA and ribosomal RNA in cells infected by vaccinia virus and the possible role of the oligoadenylate synthetase-RNase L pathways; (iii) the turnover of RNAs in cells infected by encephalomyocarditis virus, reovirus, and La Crosse virus; and finally (iv) recent studies from our laboratory on the degradation of cellular mRNAs in cells infected by HIV-1.