GERC: Tree Based Clustering for Gene Expression Data

H. A. Ahmed, P. Mahanta, D. Bhattacharyya, J. Kalita
{"title":"GERC: Tree Based Clustering for Gene Expression Data","authors":"H. A. Ahmed, P. Mahanta, D. Bhattacharyya, J. Kalita","doi":"10.1109/BIBE.2011.54","DOIUrl":null,"url":null,"abstract":"Measurement of gene expression using DNA micro arrays have revolutionized biological and medical research. This paper presents a divisive clustering algorithm that produces a tree of genes called GERC tree along with the generated clusters. Unlike a dendrogram, a GERC tree is a general tree and it is an ample resource for biological information about the genes in a data set. The leaves of the tree represent the desired clusters. The clustering method was tested with several real-life data sets and the proposed method has been found satisfactory.","PeriodicalId":391184,"journal":{"name":"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2011.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Measurement of gene expression using DNA micro arrays have revolutionized biological and medical research. This paper presents a divisive clustering algorithm that produces a tree of genes called GERC tree along with the generated clusters. Unlike a dendrogram, a GERC tree is a general tree and it is an ample resource for biological information about the genes in a data set. The leaves of the tree represent the desired clusters. The clustering method was tested with several real-life data sets and the proposed method has been found satisfactory.
基于树的基因表达数据聚类
使用DNA微阵列测量基因表达已经彻底改变了生物学和医学研究。本文提出了一种分裂聚类算法,该算法与生成的聚类一起产生一个称为GERC树的基因树。与树形图不同,GERC树是一棵通用的树,它是数据集中有关基因的生物信息的充足资源。树的叶子代表所需的簇。用多个实际数据集对聚类方法进行了测试,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信