K. Nallappan, Yang Cao, Guofu Xu, H. Guerboukha, C. Nerguizian, M. Skorobogatiy
{"title":"Terahertz Communications using Subwavelength Solid Core Fibers","authors":"K. Nallappan, Yang Cao, Guofu Xu, H. Guerboukha, C. Nerguizian, M. Skorobogatiy","doi":"10.23919/USNC/URSI49741.2020.9321681","DOIUrl":null,"url":null,"abstract":"Terahertz (THz) band is the next frontier for the ultra-high-speed communication systems. Currently, most of communications research in this spectral range is focused on wireless systems, while waveguide/fiber-based links have been less explored. Although free space communications have several advantages, the fiber-based communications provide superior performance in certain short-range communication applications. In this work, we study the use of subwavelength dielectric THz fibers for information transmission. Particularly, we use polypropylene-based rod-in-air subwavelength dielectric THz fibers of various diameters (0.57-1.75 mm) to study link performance as a function of the link length of up to ~10 m, and data bitrates of up to 6 Gbps at the carrier frequency of 128 GHz. Furthermore, we compared the power budget of the rod-in-air subwavelength THz fiber-based links to that of free space communication links and we demonstrate that fiber links offer an excellent solution for various short-range applications.","PeriodicalId":443426,"journal":{"name":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC/URSI49741.2020.9321681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Terahertz (THz) band is the next frontier for the ultra-high-speed communication systems. Currently, most of communications research in this spectral range is focused on wireless systems, while waveguide/fiber-based links have been less explored. Although free space communications have several advantages, the fiber-based communications provide superior performance in certain short-range communication applications. In this work, we study the use of subwavelength dielectric THz fibers for information transmission. Particularly, we use polypropylene-based rod-in-air subwavelength dielectric THz fibers of various diameters (0.57-1.75 mm) to study link performance as a function of the link length of up to ~10 m, and data bitrates of up to 6 Gbps at the carrier frequency of 128 GHz. Furthermore, we compared the power budget of the rod-in-air subwavelength THz fiber-based links to that of free space communication links and we demonstrate that fiber links offer an excellent solution for various short-range applications.