The Community Detection of Complex Networks Based on Markov Matrix Spectrum Optimization

Xingmao Ruan, Yueheng Sun, Bo Wang, Shuo Zhang
{"title":"The Community Detection of Complex Networks Based on Markov Matrix Spectrum Optimization","authors":"Xingmao Ruan, Yueheng Sun, Bo Wang, Shuo Zhang","doi":"10.1109/ICCECT.2012.192","DOIUrl":null,"url":null,"abstract":"This paper presents a novel community detection algorithm for complex networks based on Markov matrix spectrum optimization. An edge cutting model is used to select the edges to be cut by maximizing the second largest eigenvalue of Markov matrix. This model adopts a greedy strategy to ensure that an appropriate number of edges are cut at each iteration of the algorithm, which makes it applicable to large-scale networks. The experimental results on the simulated and real complex networks show that our algorithm can reduce the time complexity of traditional algorithms while maintaining the same performance.","PeriodicalId":153613,"journal":{"name":"2012 International Conference on Control Engineering and Communication Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Control Engineering and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECT.2012.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a novel community detection algorithm for complex networks based on Markov matrix spectrum optimization. An edge cutting model is used to select the edges to be cut by maximizing the second largest eigenvalue of Markov matrix. This model adopts a greedy strategy to ensure that an appropriate number of edges are cut at each iteration of the algorithm, which makes it applicable to large-scale networks. The experimental results on the simulated and real complex networks show that our algorithm can reduce the time complexity of traditional algorithms while maintaining the same performance.
基于马尔可夫矩阵谱优化的复杂网络社区检测
提出了一种基于马尔可夫矩阵谱优化的复杂网络社团检测算法。采用切边模型,通过最大化马尔可夫矩阵的第二大特征值来选择待切边。该模型采用贪心策略,保证每次算法迭代时切取的边数合适,适用于大规模网络。在模拟和真实复杂网络上的实验结果表明,该算法可以在保持相同性能的前提下降低传统算法的时间复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信