Neurocognitive Mechanisms for Detecting Early Phase of Depressive Disorder

Shashikanta Tarai
{"title":"Neurocognitive Mechanisms for Detecting Early Phase of Depressive Disorder","authors":"Shashikanta Tarai","doi":"10.4018/978-1-5225-8567-1.CH010","DOIUrl":null,"url":null,"abstract":"This chapter discusses neurocognitive mechanisms in terms of latency and amplitudes of EEG signals in depression that are presented in the form of event-related potentials (ERPs). Reviewing the available literature on depression, this chapter classifies early P100, ERN, N100, N170, P200, N200, and late P300 ERP components in frontal, mid-frontal, temporal, and parietal lobes. Using auditory oddball paradigm, most of the studies testing depressive patients have found robust P300 amplitude reduction. Proposing EEG methods and summarizing behavioral, neuroanatomical, and electrophysiological findings, this chapter discusses how the different tasks, paradigms, and stimuli contribute to the cohesiveness of neural signatures and psychobiological markers for identifying the patients with depression. Existing research gaps are directed to conduct ERP studies following go/no-go, flanker interference, and Stroop tasks on global and local attentional stimuli associated with happy and sad emotions to examine anterior cingulate cortex (ACC) dysfunction in depression.","PeriodicalId":374218,"journal":{"name":"Early Detection of Neurological Disorders Using Machine Learning Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Early Detection of Neurological Disorders Using Machine Learning Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-8567-1.CH010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter discusses neurocognitive mechanisms in terms of latency and amplitudes of EEG signals in depression that are presented in the form of event-related potentials (ERPs). Reviewing the available literature on depression, this chapter classifies early P100, ERN, N100, N170, P200, N200, and late P300 ERP components in frontal, mid-frontal, temporal, and parietal lobes. Using auditory oddball paradigm, most of the studies testing depressive patients have found robust P300 amplitude reduction. Proposing EEG methods and summarizing behavioral, neuroanatomical, and electrophysiological findings, this chapter discusses how the different tasks, paradigms, and stimuli contribute to the cohesiveness of neural signatures and psychobiological markers for identifying the patients with depression. Existing research gaps are directed to conduct ERP studies following go/no-go, flanker interference, and Stroop tasks on global and local attentional stimuli associated with happy and sad emotions to examine anterior cingulate cortex (ACC) dysfunction in depression.
检测抑郁症早期阶段的神经认知机制
本章讨论了以事件相关电位(ERPs)形式呈现的抑郁症脑电图信号的潜伏期和振幅方面的神经认知机制。回顾现有的关于抑郁症的文献,本章对额叶、中额叶、颞叶和顶叶的早期P100、ERN、N100、N170、P200、N200和晚期P300 ERP成分进行了分类。使用听觉怪异范式,大多数测试抑郁症患者的研究发现P300振幅明显降低。提出脑电图方法并总结行为、神经解剖学和电生理学的发现,本章讨论了不同的任务、范式和刺激如何促进神经特征和心理生物学标记的内聚性,以识别抑郁症患者。现有的研究缺口是针对与快乐和悲伤情绪相关的整体和局部注意刺激,在go/no-go、flanker干扰和Stroop任务下进行ERP研究,以检查抑郁症患者的前扣带皮层(ACC)功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信