Xinchao Li, Peng Xu, Yue Shi, M. Larson, A. Hanjalic
{"title":"Simple tag-based subclass representations for visually-varied image classes","authors":"Xinchao Li, Peng Xu, Yue Shi, M. Larson, A. Hanjalic","doi":"10.1109/CBMI.2016.7500265","DOIUrl":null,"url":null,"abstract":"In this paper, we present a subclass-representation approach that predicts the probability of a social image belonging to one particular class. We explore the co-occurrence of user-contributed tags to find subclasses with a strong connection to the top level class. We then project each image onto the resulting subclass space, generating a subclass representation for the image. The advantage of our tag-based subclasses is that they have a chance of being more visually stable and easier to model than top-level classes. Our contribution is to demonstrate that a simple and inexpensive method for generating sub-class representations has the ability to improve classification results in the case of tag classes that are visually highly heterogenous. The approach is evaluated on a set of 1 million photos with 10 top-level classes, from the dataset released by the ACM Multimedia 2013 Yahoo! Large-scale Flickr-tag Image Classification Grand Challenge. Experiments show that the proposed system delivers sound performance for visually diverse classes compared with methods that directly model top classes.","PeriodicalId":356608,"journal":{"name":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2016.7500265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a subclass-representation approach that predicts the probability of a social image belonging to one particular class. We explore the co-occurrence of user-contributed tags to find subclasses with a strong connection to the top level class. We then project each image onto the resulting subclass space, generating a subclass representation for the image. The advantage of our tag-based subclasses is that they have a chance of being more visually stable and easier to model than top-level classes. Our contribution is to demonstrate that a simple and inexpensive method for generating sub-class representations has the ability to improve classification results in the case of tag classes that are visually highly heterogenous. The approach is evaluated on a set of 1 million photos with 10 top-level classes, from the dataset released by the ACM Multimedia 2013 Yahoo! Large-scale Flickr-tag Image Classification Grand Challenge. Experiments show that the proposed system delivers sound performance for visually diverse classes compared with methods that directly model top classes.