Meta-Regression: A Framework for Robust Reactive Optimization

D. W. McClary, V. Syrotiuk, M. Kulahci
{"title":"Meta-Regression: A Framework for Robust Reactive Optimization","authors":"D. W. McClary, V. Syrotiuk, M. Kulahci","doi":"10.1109/SASO.2007.37","DOIUrl":null,"url":null,"abstract":"Maintaining optimal performance as the conditions of a system change is a challenging problem. To solve this problem, we present meta-regression, a general methodology for alleviating traditional difficulties in nonlinear regression modelling. Meta-regression allows for reactive optimization, in which system components self-organize to changing conditions in a manner that is robust, or affected minimally by other sources of variability. Meta-regression extends profiling, providing a methodology for model-building when there is incomplete knowledge of the mechanisms and interactions of a nonlinear system.","PeriodicalId":184678,"journal":{"name":"First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2007.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Maintaining optimal performance as the conditions of a system change is a challenging problem. To solve this problem, we present meta-regression, a general methodology for alleviating traditional difficulties in nonlinear regression modelling. Meta-regression allows for reactive optimization, in which system components self-organize to changing conditions in a manner that is robust, or affected minimally by other sources of variability. Meta-regression extends profiling, providing a methodology for model-building when there is incomplete knowledge of the mechanisms and interactions of a nonlinear system.
元回归:稳健反应优化的框架
在系统更改的条件下保持最佳性能是一个具有挑战性的问题。为了解决这个问题,我们提出了元回归,这是一种缓解非线性回归建模传统困难的通用方法。元回归允许反应性优化,在这种优化中,系统组件以一种稳健的方式自组织以适应不断变化的条件,或者受其他可变性源的影响最小。元回归扩展了概要分析,在对非线性系统的机制和相互作用不完全了解的情况下,为模型构建提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信