Z. Kane, E. Stecco, A. Napoli, C. Tucker, I. Obeid
{"title":"The Instrumented Multitask Assessment System (IMAS)","authors":"Z. Kane, E. Stecco, A. Napoli, C. Tucker, I. Obeid","doi":"10.1109/SPMB47826.2019.9037841","DOIUrl":null,"url":null,"abstract":"This work introduces a closed loop virtual reality platform for rehabilitating members of the armed forces after concussion or lower extremity musculoskeletal injury. Subjects perform a virtual variable-speed foot patrol designed to bring the subject’s heartrate up to an operator-designated value. Relevant biometric measurements are timestamped and recorded for post-hoc analysis, including heart (ECG), brain (EEG), and movement kinematics of the hands, feet, hips, and head. The long-term goal is to use these data to guide return-to-duty decision making and to support efficient rehabilitation protocols. The platform is physically compact for ease of deployment and has been designed in a modular fashion to allow easy integration of new sensors in future designs.","PeriodicalId":143197,"journal":{"name":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB47826.2019.9037841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a closed loop virtual reality platform for rehabilitating members of the armed forces after concussion or lower extremity musculoskeletal injury. Subjects perform a virtual variable-speed foot patrol designed to bring the subject’s heartrate up to an operator-designated value. Relevant biometric measurements are timestamped and recorded for post-hoc analysis, including heart (ECG), brain (EEG), and movement kinematics of the hands, feet, hips, and head. The long-term goal is to use these data to guide return-to-duty decision making and to support efficient rehabilitation protocols. The platform is physically compact for ease of deployment and has been designed in a modular fashion to allow easy integration of new sensors in future designs.