Combination of Unsupervised Keyphrase Extraction Algorithms

Zede Zhu, Miao Li, Lei Chen, Zhenxin Yang, Sheng Chen
{"title":"Combination of Unsupervised Keyphrase Extraction Algorithms","authors":"Zede Zhu, Miao Li, Lei Chen, Zhenxin Yang, Sheng Chen","doi":"10.1109/IALP.2013.14","DOIUrl":null,"url":null,"abstract":"Key phrase extraction plays a significant role in many language processing tasks such as text summarization, text categorization and information retrieval. However, none study combines several approaches to improve the performance of key phrase extraction. This paper first implements three representative unsupervised algorithms TfIdf, Text Rank and Expand Rank, and then proposes a generalized framework using serial, parallel and voting methods on combining these algorithms for comprehensive analysis of key phrase extraction. Experimental results, carried out on an evaluation dataset including 1040 abstracts from Chinese thesis, demonstrate the remarkable performance of some combination approaches.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Key phrase extraction plays a significant role in many language processing tasks such as text summarization, text categorization and information retrieval. However, none study combines several approaches to improve the performance of key phrase extraction. This paper first implements three representative unsupervised algorithms TfIdf, Text Rank and Expand Rank, and then proposes a generalized framework using serial, parallel and voting methods on combining these algorithms for comprehensive analysis of key phrase extraction. Experimental results, carried out on an evaluation dataset including 1040 abstracts from Chinese thesis, demonstrate the remarkable performance of some combination approaches.
无监督关键词提取算法的组合
关键短语提取在文本摘要、文本分类和信息检索等语言处理任务中起着重要的作用。然而,没有一项研究结合几种方法来提高关键短语提取的性能。本文首先实现了三种具有代表性的无监督算法TfIdf、Text Rank和Expand Rank,然后将这些算法结合起来,提出了一个采用串行、并行和投票方法的通用框架,对关键短语提取进行综合分析。在包含1040篇中文论文摘要的评价数据集上进行的实验结果表明,一些组合方法具有显著的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信