Evaluation of Spatiotemporal Detectors and Descriptors for Facial Expression Recognition

Munawar Hayat, Bennamoun, A. El-Sallam
{"title":"Evaluation of Spatiotemporal Detectors and Descriptors for Facial Expression Recognition","authors":"Munawar Hayat, Bennamoun, A. El-Sallam","doi":"10.1109/HSI.2012.16","DOIUrl":null,"url":null,"abstract":"Local spatiotemporal detectors and descriptors have recently become very popular for video analysis in many applications. They do not require any preprocessing steps and are invariant to spatial and temporal scales. Despite their computational simplicity, they have not been evaluated and tested for video analysis of facial data. This paper considers two space-time detectors and four descriptors and uses bag of features framework for human facial expression recognition on BU_4DFE data set. A comparison of local spatiotemporal features with other non-spatiotemporal published techniques on the same data set is also given. Unlike spatiotemporal features, these techniques involve time consuming and computationally intensive preprocessing steps like manual initialization and tracking of facial points. Our results show that despite being totally automatic and not requiring any user intervention, local spacetime features provide promising and comparable performance for facial expression recognition on BU_4DFE data set.","PeriodicalId":222377,"journal":{"name":"2012 5th International Conference on Human System Interactions","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 5th International Conference on Human System Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2012.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Local spatiotemporal detectors and descriptors have recently become very popular for video analysis in many applications. They do not require any preprocessing steps and are invariant to spatial and temporal scales. Despite their computational simplicity, they have not been evaluated and tested for video analysis of facial data. This paper considers two space-time detectors and four descriptors and uses bag of features framework for human facial expression recognition on BU_4DFE data set. A comparison of local spatiotemporal features with other non-spatiotemporal published techniques on the same data set is also given. Unlike spatiotemporal features, these techniques involve time consuming and computationally intensive preprocessing steps like manual initialization and tracking of facial points. Our results show that despite being totally automatic and not requiring any user intervention, local spacetime features provide promising and comparable performance for facial expression recognition on BU_4DFE data set.
人脸表情识别的时空检测器和描述符评价
局部时空检测器和描述符近年来在视频分析的许多应用中变得非常流行。它们不需要任何预处理步骤,并且不受空间和时间尺度的影响。尽管计算简单,但它们还没有被评估和测试用于面部数据的视频分析。本文考虑两个时空检测器和四个描述符,采用特征包框架对BU_4DFE数据集进行人脸表情识别。在同一数据集上,将局部时空特征与其他已发表的非时空技术进行了比较。与时空特征不同,这些技术涉及人工初始化和面部点跟踪等耗时且计算量大的预处理步骤。我们的研究结果表明,尽管局部时空特征是完全自动的,不需要任何用户干预,但在BU_4DFE数据集上,局部时空特征为面部表情识别提供了有前途的和相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信