Jinli Zhao, Kai Yuan, Peng Li, H. Ji, Chengdi Ding, Maosheng Ding
{"title":"An equivalent A-Stable dynamic simulation algorithm of active distribution networks based on the implicit projective method","authors":"Jinli Zhao, Kai Yuan, Peng Li, H. Ji, Chengdi Ding, Maosheng Ding","doi":"10.1109/APPEEC.2014.7066126","DOIUrl":null,"url":null,"abstract":"The dynamic characteristics of active distribution networks (ADNs) need to be concerned if a large number of distributed generators are connected. A highly efficient and reliable simulation algorithm with good numerical stability is therefore essential for the stability analysis of ADNs. This paper proposes a novel dynamic simulation algorithm of ADNs based on the implicit projective method, which is a second order integration algorithm. The proposed method is an equivalent A-Stable method and the calculation efficiency is increased significantly compared with the traditional integration algorithms. It is especially suitable for the dynamic simulation and stability analysis of the ADNs with a large number of DGs. Case studies based on the IEEE 123-node test feeder show the feasibility and effectiveness of the proposed method, which is verified through the comparison with the commercial simulation tool DIgSI-LENT/PowerFactory and the traditional trapezoidal method.","PeriodicalId":206418,"journal":{"name":"2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2014.7066126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic characteristics of active distribution networks (ADNs) need to be concerned if a large number of distributed generators are connected. A highly efficient and reliable simulation algorithm with good numerical stability is therefore essential for the stability analysis of ADNs. This paper proposes a novel dynamic simulation algorithm of ADNs based on the implicit projective method, which is a second order integration algorithm. The proposed method is an equivalent A-Stable method and the calculation efficiency is increased significantly compared with the traditional integration algorithms. It is especially suitable for the dynamic simulation and stability analysis of the ADNs with a large number of DGs. Case studies based on the IEEE 123-node test feeder show the feasibility and effectiveness of the proposed method, which is verified through the comparison with the commercial simulation tool DIgSI-LENT/PowerFactory and the traditional trapezoidal method.