{"title":"Game theoretic approach for polarimetric MIMO radar waveform design","authors":"S. Gogineni, A. Nehorai","doi":"10.1109/WDD.2012.7311294","DOIUrl":null,"url":null,"abstract":"Polarimetric radar systems allow the flexibility of transmitting arbitrarily polarized waveforms that match the scattering profiles of the target. Since different types of targets have varying profiles, the advantages of a polarimetric radar system can fully be exploited only when the type of target is accurately estimated. However, accurate estimation requires a significant amount of training data, which can be expensive. We propose a polarimetric design scheme for distributed Multiple Input Multiple Output (MIMO) radar target detection. We formulate the selection of transmit polarizations using a game theoretic framework by examining the impact of all possible transmit schemes on the detection performance with different available target profiles. This approach does not require training data, and we show a significant performance improvement due to the polarimetric design.","PeriodicalId":102625,"journal":{"name":"2012 International Waveform Diversity & Design Conference (WDD)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Waveform Diversity & Design Conference (WDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDD.2012.7311294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Polarimetric radar systems allow the flexibility of transmitting arbitrarily polarized waveforms that match the scattering profiles of the target. Since different types of targets have varying profiles, the advantages of a polarimetric radar system can fully be exploited only when the type of target is accurately estimated. However, accurate estimation requires a significant amount of training data, which can be expensive. We propose a polarimetric design scheme for distributed Multiple Input Multiple Output (MIMO) radar target detection. We formulate the selection of transmit polarizations using a game theoretic framework by examining the impact of all possible transmit schemes on the detection performance with different available target profiles. This approach does not require training data, and we show a significant performance improvement due to the polarimetric design.