Fast algorithm for local stereo matching in disparity estimation

Y. Tseng, Tian-Sheuan Chang
{"title":"Fast algorithm for local stereo matching in disparity estimation","authors":"Y. Tseng, Tian-Sheuan Chang","doi":"10.1109/ICDSP.2011.6004899","DOIUrl":null,"url":null,"abstract":"The typical local stereo matching for disparity estimation can deliver accurate disparity maps by a well-designed cost aggregation method, but usually suffers from natively high computational complexity due to its dense processing. To address it, we propose a fast algorithm with search point reduction on spatial and disparity domains to generate a sparse search map. The sparse search map guides the local stereo matching to produce a sparse disparity map, and then it is recovered to a dense disparity map. The experimental results show the proposed fast algorithm could reduce the computation time to 8.8% of original algorithm for 2-megapixel images, and only has slightly quality degradation by 0.92dB in final view synthesis images.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The typical local stereo matching for disparity estimation can deliver accurate disparity maps by a well-designed cost aggregation method, but usually suffers from natively high computational complexity due to its dense processing. To address it, we propose a fast algorithm with search point reduction on spatial and disparity domains to generate a sparse search map. The sparse search map guides the local stereo matching to produce a sparse disparity map, and then it is recovered to a dense disparity map. The experimental results show the proposed fast algorithm could reduce the computation time to 8.8% of original algorithm for 2-megapixel images, and only has slightly quality degradation by 0.92dB in final view synthesis images.
视差估计中局部立体匹配的快速算法
典型的视差估计局部立体匹配通过设计良好的代价聚合方法可以得到准确的视差图,但由于其处理密集,计算复杂度高。为了解决这一问题,我们提出了一种快速算法,在空间域和视差域上减少搜索点来生成稀疏搜索图。稀疏搜索图引导局部立体匹配生成稀疏视差图,然后恢复为密集视差图。实验结果表明,该算法对200万像素图像的计算时间比原算法减少了8.8%,对最终视图合成图像的质量下降幅度仅为0.92dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信