Using feature probabilities to reduce the expected computational cost of template matching

Avraham Margalit, Azriel Rosenfeld
{"title":"Using feature probabilities to reduce the expected computational cost of template matching","authors":"Avraham Margalit,&nbsp;Azriel Rosenfeld","doi":"10.1016/0734-189X(90)90125-F","DOIUrl":null,"url":null,"abstract":"<div><p>Matching of two digital images is computationally expensive, because it requires a pixel-by-pixel comparison of the pixels in the image and in the template for every location in the image. In this paper we present a technique to reduce the computational cost of template matching by using probabilistic knowledge about local features that appear in the image and the template. Using this technique the most probable locations for successful matching can be found. In the paper we discuss how the size of the features affects the computational cost and the robustness of the technique. We also present results of experiments showing that even simple methods of feature extraction and representation can reduce the computational cost bymmore than an order of magnitude.</p></div>","PeriodicalId":100319,"journal":{"name":"Computer Vision, Graphics, and Image Processing","volume":"52 1","pages":"Pages 110-123"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0734-189X(90)90125-F","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision, Graphics, and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0734189X9090125F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Matching of two digital images is computationally expensive, because it requires a pixel-by-pixel comparison of the pixels in the image and in the template for every location in the image. In this paper we present a technique to reduce the computational cost of template matching by using probabilistic knowledge about local features that appear in the image and the template. Using this technique the most probable locations for successful matching can be found. In the paper we discuss how the size of the features affects the computational cost and the robustness of the technique. We also present results of experiments showing that even simple methods of feature extraction and representation can reduce the computational cost bymmore than an order of magnitude.

利用特征概率降低模板匹配的预期计算成本
两个数字图像的匹配在计算上是昂贵的,因为它需要对图像中的每个位置的图像和模板中的像素进行逐像素的比较。本文提出了一种利用图像和模板中出现的局部特征的概率知识来降低模板匹配计算成本的方法。使用这种技术可以找到最可能成功匹配的位置。在本文中,我们讨论了特征的大小如何影响计算成本和技术的鲁棒性。我们还提供了实验结果,表明即使是简单的特征提取和表示方法也可以将计算成本降低一个数量级以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信