An Adaptable Real-Time Object Detection for Traffic Surveillance using R-CNN over CNN with Improved Accuracy

G. Vinod, G. PadmaPriya
{"title":"An Adaptable Real-Time Object Detection for Traffic Surveillance using R-CNN over CNN with Improved Accuracy","authors":"G. Vinod, G. PadmaPriya","doi":"10.1109/ICBATS54253.2022.9759030","DOIUrl":null,"url":null,"abstract":"Real time object detection in traffic surveillance is one of the latest topics in today’s world using Region based Convolutional Neural Networks algorithm in comparison with Convolutional Neural Networks. Real-Time Object Detection is performed using Regional Convolutional Neural Networks (N=78) over Convolutional Neural Networks (N=78) with the split size of training and testing dataset 70% and 30% respectively. Regional Convolutional Neural Networks had significantly better accuracy (75.6%) compared to Convolutional Neural Networks (47.7%) and attained significance value of p=0.041. Regional Convolutional Neural Networks achieved significantly better object detection than Convolutional Neural Networks for identifying real-time objects in traffic surveillance.","PeriodicalId":289224,"journal":{"name":"2022 International Conference on Business Analytics for Technology and Security (ICBATS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Business Analytics for Technology and Security (ICBATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBATS54253.2022.9759030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Real time object detection in traffic surveillance is one of the latest topics in today’s world using Region based Convolutional Neural Networks algorithm in comparison with Convolutional Neural Networks. Real-Time Object Detection is performed using Regional Convolutional Neural Networks (N=78) over Convolutional Neural Networks (N=78) with the split size of training and testing dataset 70% and 30% respectively. Regional Convolutional Neural Networks had significantly better accuracy (75.6%) compared to Convolutional Neural Networks (47.7%) and attained significance value of p=0.041. Regional Convolutional Neural Networks achieved significantly better object detection than Convolutional Neural Networks for identifying real-time objects in traffic surveillance.
一种基于R-CNN的交通监控自适应实时目标检测方法
与卷积神经网络相比,基于区域的卷积神经网络算法在交通监控中的实时目标检测是当今世界最新的研究课题之一。使用区域卷积神经网络(N=78)在卷积神经网络(N=78)上进行实时目标检测,训练和测试数据集的分割大小分别为70%和30%。区域卷积神经网络的准确率(75.6%)明显优于卷积神经网络(47.7%),显著性值p=0.041。在交通监控中,区域卷积神经网络的目标检测效果明显优于卷积神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信