The Homology Kernel: A Biologically Motivated Sequence Embedding into Euclidean Space

E. Eskin, S. Snir
{"title":"The Homology Kernel: A Biologically Motivated Sequence Embedding into Euclidean Space","authors":"E. Eskin, S. Snir","doi":"10.1109/CIBCB.2005.1594915","DOIUrl":null,"url":null,"abstract":"Part of the challenge of modeling protein sequences is their discrete nature. Many of the most powerful statistical and learning techniques are applicable to points in a Euclidean space but not directly applicable to discrete sequences. One way to apply these techniques to protein sequences is to embed the sequences into a Euclidean space and then apply these techniques to the embedded points. In this paper, we introduce a biologically motivated sequence embedding, the homology kernel, which takes into account intuitions from local alignment, sequence homology, and predicted secondary structure. We apply the homology kernel in several ways. We demonstrate how the homology kernel can be used for protein family classification and outperforms state-of-the-art methods for remote homology detection. We show that the homology kernel can be used for secondary structure prediction and is competitive with popular secondary structure prediction methods. Finally, we show how the homology kernel can be used to incorporate information from homologous sequences in local sequence alignment.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Part of the challenge of modeling protein sequences is their discrete nature. Many of the most powerful statistical and learning techniques are applicable to points in a Euclidean space but not directly applicable to discrete sequences. One way to apply these techniques to protein sequences is to embed the sequences into a Euclidean space and then apply these techniques to the embedded points. In this paper, we introduce a biologically motivated sequence embedding, the homology kernel, which takes into account intuitions from local alignment, sequence homology, and predicted secondary structure. We apply the homology kernel in several ways. We demonstrate how the homology kernel can be used for protein family classification and outperforms state-of-the-art methods for remote homology detection. We show that the homology kernel can be used for secondary structure prediction and is competitive with popular secondary structure prediction methods. Finally, we show how the homology kernel can be used to incorporate information from homologous sequences in local sequence alignment.
同源核:嵌入欧几里得空间的生物动机序列
蛋白质序列建模的部分挑战在于它们的离散性。许多最强大的统计和学习技术适用于欧几里得空间中的点,但不能直接适用于离散序列。将这些技术应用于蛋白质序列的一种方法是将序列嵌入欧几里得空间,然后将这些技术应用于嵌入的点。在本文中,我们引入了一种生物动机序列嵌入,即同源核,它考虑了从局部比对、序列同源性和预测二级结构的直觉。我们以几种方式应用同调核。我们展示了同源核如何用于蛋白质家族分类,并优于最先进的远程同源检测方法。我们证明了同调核可以用于二级结构预测,并且与流行的二级结构预测方法具有竞争力。最后,我们展示了如何利用同源核在局部序列比对中整合同源序列的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信