Automatic EOG Artifact Removal in Brain-computer Interface Systems

Wei-Yen Hsu, Cheng-Xuan Li, Meng-Chen Li, Hui-Yu Tien
{"title":"Automatic EOG Artifact Removal in Brain-computer Interface Systems","authors":"Wei-Yen Hsu, Cheng-Xuan Li, Meng-Chen Li, Hui-Yu Tien","doi":"10.6025/jmpt/2018/9/4/117-123","DOIUrl":null,"url":null,"abstract":"In this study, we propose a system to recognize the finger-lifting electroencephalogram (EEG) data. Combined with independent component analysis (ICA) and feature extraction, fuzzy c-means (FCM) clustering is used to discriminate between left and right finger movement without supervision. ICA is used to eliminate the electrooculography (EOG) artifacts. Wavelet-fractal features are then extracted from wavelet data via fractal dimension. FCM clustering is used for feature discrimination. It is an unsupervised approach suitable for the applications of biomedical signals. After EOG artifact removal, the performance is improved for all subjects.","PeriodicalId":226712,"journal":{"name":"J. Multim. Process. Technol.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Multim. Process. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6025/jmpt/2018/9/4/117-123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a system to recognize the finger-lifting electroencephalogram (EEG) data. Combined with independent component analysis (ICA) and feature extraction, fuzzy c-means (FCM) clustering is used to discriminate between left and right finger movement without supervision. ICA is used to eliminate the electrooculography (EOG) artifacts. Wavelet-fractal features are then extracted from wavelet data via fractal dimension. FCM clustering is used for feature discrimination. It is an unsupervised approach suitable for the applications of biomedical signals. After EOG artifact removal, the performance is improved for all subjects.
脑机接口系统中EOG伪影的自动去除
在这项研究中,我们提出了一个识别手指抬起的脑电图(EEG)数据的系统。将独立分量分析(ICA)和特征提取相结合,采用模糊c均值(FCM)聚类方法在无监督的情况下区分左右手指的运动。ICA用于消除眼电图(EOG)伪影。然后通过分形维数从小波数据中提取小波分形特征。FCM聚类用于特征识别。它是一种适合于生物医学信号应用的无监督方法。去除EOG伪影后,所有受试者的表现都得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信