On the Non-Generalizability in Bug Prediction

Haidar Osman
{"title":"On the Non-Generalizability in Bug Prediction","authors":"Haidar Osman","doi":"10.7892/BORIS.96865","DOIUrl":null,"url":null,"abstract":"Bug prediction is a technique used to estimate the most bug-prone entities in software systems. Bug prediction approaches vary in many design options, such as dependent variables, independent variables, and machine learning models. Choosing the right combination of design options to build an effective bug predictor is hard. Previous studies do not consider this complexity and draw conclusions based on fewer-than-necessary experiments. We argue that each software project is unique from the perspective of its development process. Consequently, metrics and machine learning models perform differently on different projects, in the context of bug prediction. We confirm our hypothesis empirically by running different bug predictors on different systems. We show there are no universal bug prediction configurations that work on all projects.","PeriodicalId":429948,"journal":{"name":"Seminar on Advanced Techniques and Tools for Software Evolution","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminar on Advanced Techniques and Tools for Software Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7892/BORIS.96865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Bug prediction is a technique used to estimate the most bug-prone entities in software systems. Bug prediction approaches vary in many design options, such as dependent variables, independent variables, and machine learning models. Choosing the right combination of design options to build an effective bug predictor is hard. Previous studies do not consider this complexity and draw conclusions based on fewer-than-necessary experiments. We argue that each software project is unique from the perspective of its development process. Consequently, metrics and machine learning models perform differently on different projects, in the context of bug prediction. We confirm our hypothesis empirically by running different bug predictors on different systems. We show there are no universal bug prediction configurations that work on all projects.
关于Bug预测的非泛化性
Bug预测是一种用于估计软件系统中最容易出现Bug的实体的技术。Bug预测方法在许多设计选项中各不相同,例如因变量、自变量和机器学习模型。选择正确的设计选项组合来构建有效的bug预测器是很困难的。以前的研究没有考虑到这种复杂性,并根据较少的必要实验得出结论。我们认为,从其开发过程的角度来看,每个软件项目都是独特的。因此,在bug预测的背景下,度量和机器学习模型在不同的项目中表现不同。我们通过在不同的系统上运行不同的bug预测器来证实我们的假设。我们展示了不存在适用于所有项目的通用bug预测配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信