Visualization and classification of graph-structured data: the case of the Enron dataset

C. Bouveyron, H. Chipman
{"title":"Visualization and classification of graph-structured data: the case of the Enron dataset","authors":"C. Bouveyron, H. Chipman","doi":"10.1109/IJCNN.2007.4371181","DOIUrl":null,"url":null,"abstract":"Graph-structured networks are often used to represent relationships between persons in organizations or communities. In this paper we investigate the problem of learning a latent space representation of the data in which proximity in the latent space increases the likelihood of a social tie between the nodes. In addition, this latent space representation can be used to classify these data into homogeneous groups in order to identify, for instance, marginal communities of persons. We propose a Bayesian way to select both dimension of the latent space and number of groups. We apply our approach to the Enron dataset and we show interesting representation and clustering of individuals.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"2006 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Graph-structured networks are often used to represent relationships between persons in organizations or communities. In this paper we investigate the problem of learning a latent space representation of the data in which proximity in the latent space increases the likelihood of a social tie between the nodes. In addition, this latent space representation can be used to classify these data into homogeneous groups in order to identify, for instance, marginal communities of persons. We propose a Bayesian way to select both dimension of the latent space and number of groups. We apply our approach to the Enron dataset and we show interesting representation and clustering of individuals.
图结构数据的可视化和分类:安然数据集的案例
图结构网络通常用于表示组织或社区中人员之间的关系。在本文中,我们研究了学习数据的潜在空间表示的问题,其中潜在空间中的接近性增加了节点之间社会联系的可能性。此外,这种潜在空间表示可用于将这些数据分类为同质组,以识别例如边缘社区的人。我们提出了一种贝叶斯方法来选择潜在空间的维数和组数。我们将我们的方法应用于安然数据集,我们展示了有趣的个人表示和聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信