Mining Search Engine Query Log for Evaluating Content and Structure of a Web Site

M. Hosseini, H. Abolhassani
{"title":"Mining Search Engine Query Log for Evaluating Content and Structure of a Web Site","authors":"M. Hosseini, H. Abolhassani","doi":"10.1109/WI.2007.77","DOIUrl":null,"url":null,"abstract":"Mining search engine query log is a new method for evaluating web site link structure and information architecture. In this paper we propose a new query-URL co-clustering for a web site useful to evaluate information architecture and link structure. Firstly, all queries and clicked URLs corresponding to particular web site are collected from a query log as bipartite graph, one side for queries and the other side for URLs. Then a new content free clustering is applied to cluster queries and URLs concurrently. Afterwards, based on information entropy, clusters of URLs and queries will be used for evaluating link structure and information architecture respectively. Data sets of different web sites have been extracted from a huge query log to evaluate our method, and experiments show promising result.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Mining search engine query log is a new method for evaluating web site link structure and information architecture. In this paper we propose a new query-URL co-clustering for a web site useful to evaluate information architecture and link structure. Firstly, all queries and clicked URLs corresponding to particular web site are collected from a query log as bipartite graph, one side for queries and the other side for URLs. Then a new content free clustering is applied to cluster queries and URLs concurrently. Afterwards, based on information entropy, clusters of URLs and queries will be used for evaluating link structure and information architecture respectively. Data sets of different web sites have been extracted from a huge query log to evaluate our method, and experiments show promising result.
挖掘搜索引擎查询日志以评估网站的内容和结构
挖掘搜索引擎查询日志是评估网站链接结构和信息体系结构的一种新方法。本文提出了一种新的网站查询- url共聚类方法,用于评估网站的信息结构和链接结构。首先,从查询日志中收集特定网站对应的所有查询和点击url作为二部图,一侧为查询,另一侧为url。然后将一种新的无内容聚类方法应用于集群查询和url。然后,基于信息熵,利用url聚类和查询聚类分别对链接结构和信息架构进行评价。我们从大量的查询日志中提取了不同网站的数据集来评估我们的方法,实验显示了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信