Fruit flies and moduli: interactions between biology and mathematics

Ezra Miller
{"title":"Fruit flies and moduli: interactions between biology and mathematics","authors":"Ezra Miller","doi":"10.1090/noti1290","DOIUrl":null,"url":null,"abstract":"Possibilities for using geometry and topology to analyze statistical problems in biology raise a host of novel questions in geometry, probability, algebra, and combinatorics that demonstrate the power of biology to influence the future of pure mathematics. This expository article is a tour through some biological explorations and their mathematical ramifications. The article starts with evolution of novel topological features in wing veins of fruit flies, which are quantified using the algebraic structure of multiparameter persistent homology. The statistical issues involved highlight mathematical implications of sampling from moduli spaces. These lead to geometric probability on stratified spaces, including the sticky phenomenon for Frechet means and the origin of this mathematical area in the reconstruction of phylogenetic trees.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"139 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/noti1290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Possibilities for using geometry and topology to analyze statistical problems in biology raise a host of novel questions in geometry, probability, algebra, and combinatorics that demonstrate the power of biology to influence the future of pure mathematics. This expository article is a tour through some biological explorations and their mathematical ramifications. The article starts with evolution of novel topological features in wing veins of fruit flies, which are quantified using the algebraic structure of multiparameter persistent homology. The statistical issues involved highlight mathematical implications of sampling from moduli spaces. These lead to geometric probability on stratified spaces, including the sticky phenomenon for Frechet means and the origin of this mathematical area in the reconstruction of phylogenetic trees.
果蝇与模:生物学与数学的相互作用
利用几何学和拓扑学来分析生物学中的统计问题的可能性,在几何学、概率论、代数和组合学中提出了许多新的问题,这些问题展示了生物学影响纯数学未来的力量。这篇说明性的文章是通过一些生物学探索和它们的数学分支的旅行。本文从果蝇翅脉新拓扑特征的演化入手,利用多参数持久同源的代数结构对其进行了量化。所涉及的统计问题突出了从模空间抽样的数学含义。这导致了分层空间的几何概率,包括Frechet均值的粘性现象和系统发育树重建中这个数学区域的起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信