An iterative algorithm for solving an initial boundary value problem of oxygen transport in brain

A. Kovtanyuk, A. Chebotarev, Anastasiya A. Dekalchuk, N. Botkin, R. Lampe
{"title":"An iterative algorithm for solving an initial boundary value problem of oxygen transport in brain","authors":"A. Kovtanyuk, A. Chebotarev, Anastasiya A. Dekalchuk, N. Botkin, R. Lampe","doi":"10.1109/DD46733.2019.9016443","DOIUrl":null,"url":null,"abstract":"A non-stationary model of oxygen transport in brain is studied. The model comprises two coupled, non-linear partial differential equations describing the oxygen concentration in the blood and tissue phases. Thus, the model is the so-called continuum one, where the blood and tissue fractions occupy the same spatial domain. A priori estimates of solutions are obtained, and an iterative procedure for finding them is proposed. The convergence of this method to a unique weak solution of the problem is proven. A numerical example illustrates the theoretical analysis.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A non-stationary model of oxygen transport in brain is studied. The model comprises two coupled, non-linear partial differential equations describing the oxygen concentration in the blood and tissue phases. Thus, the model is the so-called continuum one, where the blood and tissue fractions occupy the same spatial domain. A priori estimates of solutions are obtained, and an iterative procedure for finding them is proposed. The convergence of this method to a unique weak solution of the problem is proven. A numerical example illustrates the theoretical analysis.
求解脑内氧输运初边值问题的迭代算法
研究了脑内氧运输的非稳态模型。该模型包括两个耦合的非线性偏微分方程,描述血液和组织阶段的氧浓度。因此,该模型是所谓的连续体模型,其中血液和组织部分占据相同的空间域。得到了解的先验估计,并给出了求解的迭代过程。证明了该方法收敛于问题的唯一弱解。数值算例说明了理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信