Effect of Training Data Order for Machine Learning

J. Mange
{"title":"Effect of Training Data Order for Machine Learning","authors":"J. Mange","doi":"10.1109/CSCI49370.2019.00078","DOIUrl":null,"url":null,"abstract":"For many Machine Learning algorithms on supervised learning problems, the order of training data samples can affect the quality of the derived model and the accuracy of predictions. This paper describes a project to quantify this effect, and to statistically quantify the variation exhibited by several algorithms using permutations of a given training data set. It is demonstrated that this variation can be quite significant, and that training data set ordering should be an important consideration when approaching a classification task.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

For many Machine Learning algorithms on supervised learning problems, the order of training data samples can affect the quality of the derived model and the accuracy of predictions. This paper describes a project to quantify this effect, and to statistically quantify the variation exhibited by several algorithms using permutations of a given training data set. It is demonstrated that this variation can be quite significant, and that training data set ordering should be an important consideration when approaching a classification task.
训练数据顺序对机器学习的影响
对于许多有监督学习问题的机器学习算法,训练数据样本的顺序会影响导出模型的质量和预测的准确性。本文描述了一个量化这种影响的项目,并通过使用给定训练数据集的排列来统计量化几种算法所表现出的变化。研究表明,这种变化可能非常显著,在处理分类任务时,训练数据集的排序应该是一个重要的考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信