Koosha Sadeghi, Ayan Banerjee, Javad Sohankar, S. Gupta
{"title":"Toward Parametric Security Analysis of Machine Learning Based Cyber Forensic Biometric Systems","authors":"Koosha Sadeghi, Ayan Banerjee, Javad Sohankar, S. Gupta","doi":"10.1109/ICMLA.2016.0110","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms are widely used in cyber forensic biometric systems to analyze a subject's truthfulness in an interrogation. An analytical method (rather than experimental) to evaluate the security strength of these systems under potential cyber attacks is essential. In this paper, we formalize a theoretical method for analyzing the immunity of a machine learning based cyber forensic system against evidence tampering attack. We apply our theory on brain signal based forensic systems that use neural networks to classify responses from a subject. Attack simulation is run to validate our theoretical analysis results.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Machine learning algorithms are widely used in cyber forensic biometric systems to analyze a subject's truthfulness in an interrogation. An analytical method (rather than experimental) to evaluate the security strength of these systems under potential cyber attacks is essential. In this paper, we formalize a theoretical method for analyzing the immunity of a machine learning based cyber forensic system against evidence tampering attack. We apply our theory on brain signal based forensic systems that use neural networks to classify responses from a subject. Attack simulation is run to validate our theoretical analysis results.