Toward Parametric Security Analysis of Machine Learning Based Cyber Forensic Biometric Systems

Koosha Sadeghi, Ayan Banerjee, Javad Sohankar, S. Gupta
{"title":"Toward Parametric Security Analysis of Machine Learning Based Cyber Forensic Biometric Systems","authors":"Koosha Sadeghi, Ayan Banerjee, Javad Sohankar, S. Gupta","doi":"10.1109/ICMLA.2016.0110","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms are widely used in cyber forensic biometric systems to analyze a subject's truthfulness in an interrogation. An analytical method (rather than experimental) to evaluate the security strength of these systems under potential cyber attacks is essential. In this paper, we formalize a theoretical method for analyzing the immunity of a machine learning based cyber forensic system against evidence tampering attack. We apply our theory on brain signal based forensic systems that use neural networks to classify responses from a subject. Attack simulation is run to validate our theoretical analysis results.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Machine learning algorithms are widely used in cyber forensic biometric systems to analyze a subject's truthfulness in an interrogation. An analytical method (rather than experimental) to evaluate the security strength of these systems under potential cyber attacks is essential. In this paper, we formalize a theoretical method for analyzing the immunity of a machine learning based cyber forensic system against evidence tampering attack. We apply our theory on brain signal based forensic systems that use neural networks to classify responses from a subject. Attack simulation is run to validate our theoretical analysis results.
基于机器学习的网络法医生物识别系统参数安全性分析
机器学习算法被广泛应用于网络法医生物识别系统中,用于分析审问对象的真实性。评估这些系统在潜在网络攻击下的安全强度的分析方法(而不是实验方法)是必不可少的。在本文中,我们形式化了一种理论方法来分析基于机器学习的网络取证系统对证据篡改攻击的免疫力。我们将我们的理论应用于基于脑信号的法医系统,该系统使用神经网络对受试者的反应进行分类。通过攻击仿真验证了理论分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信