Real-Time 3-D Human Body Tracking using Variable Length Markov Models

Fabrice Caillette, Aphrodite Galata, T. Howard
{"title":"Real-Time 3-D Human Body Tracking using Variable Length Markov Models","authors":"Fabrice Caillette, Aphrodite Galata, T. Howard","doi":"10.5244/C.19.49","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a 3-D human-body tracker capable of handling fast and complex motions in real-time. The parameter space, augmented with first order derivatives, is automatically partitioned into Gaussian clusters each representing an elementary motion: hypothesis propagation inside each cluster is therefore accurate and efficient. The transitions between clusters use the predictions of a Variable Length Markov Model which can explain highlevel behaviours over a long history. Using Monte-Carlo methods, evaluation of model candidates is critical for both speed and robustness. We present a new evaluation scheme based on volumetric reconstruction and blobs-fitting, where appearance models and image evidences are represented by Gaussian mixtures. We demonstrate the application of our tracker to long video sequences exhibiting rapid and diverse movements.","PeriodicalId":196845,"journal":{"name":"Procedings of the British Machine Vision Conference 2005","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedings of the British Machine Vision Conference 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5244/C.19.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

In this paper, we introduce a 3-D human-body tracker capable of handling fast and complex motions in real-time. The parameter space, augmented with first order derivatives, is automatically partitioned into Gaussian clusters each representing an elementary motion: hypothesis propagation inside each cluster is therefore accurate and efficient. The transitions between clusters use the predictions of a Variable Length Markov Model which can explain highlevel behaviours over a long history. Using Monte-Carlo methods, evaluation of model candidates is critical for both speed and robustness. We present a new evaluation scheme based on volumetric reconstruction and blobs-fitting, where appearance models and image evidences are represented by Gaussian mixtures. We demonstrate the application of our tracker to long video sequences exhibiting rapid and diverse movements.
基于变长马尔可夫模型的实时三维人体跟踪
本文介绍了一种能够实时处理快速复杂运动的三维人体跟踪器。参数空间,增广了一阶导数,被自动划分为高斯簇,每个簇代表一个基本运动:因此,每个簇内的假设传播是准确和有效的。集群之间的转换使用可变长度马尔可夫模型的预测,该模型可以解释长期历史上的高级行为。使用蒙特卡罗方法,候选模型的评估对于速度和鲁棒性都是至关重要的。我们提出了一种基于体积重建和斑点拟合的新评估方案,其中外观模型和图像证据用高斯混合表示。我们演示了我们的跟踪器的应用,以长视频序列显示快速和多样的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信