Using the RNN to develop a Web-based pattern recognition system for pattern search of component database

Sung-Jung Hsiao, Shih-Ching Ou, Kuo-Chin Fan, Wen-Tsai Sung
{"title":"Using the RNN to develop a Web-based pattern recognition system for pattern search of component database","authors":"Sung-Jung Hsiao, Shih-Ching Ou, Kuo-Chin Fan, Wen-Tsai Sung","doi":"10.1109/CW.2002.1180873","DOIUrl":null,"url":null,"abstract":"This study attempts to apply pattern recognition (PR) technologies with associative memory to real-time pattern recognition of engineering components using a client-server network structure in a Web-based recognition system. A remote engineer is able to draw directly the shape of engineering components using the browser, and the recognition system will search for the component database of a company using the Internet. Component patterns are stored in the database system. Their properties and specifications are also attached to the data field of each component pattern except that of engineering components. In our approach, the recognition system adopts parallel computing, and will raise the recognition rate. Our recognition system is a client-server network structure using the Internet. The system uses a recurrent neural network (RNN) with associative memory to perform training and recognition. The last phase utilizes the technology of database matching and solves the problem of spurious state. Our system will be used at the Yang-Fen Automation Electrical Engineering Company.","PeriodicalId":376322,"journal":{"name":"First International Symposium on Cyber Worlds, 2002. Proceedings.","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Cyber Worlds, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2002.1180873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study attempts to apply pattern recognition (PR) technologies with associative memory to real-time pattern recognition of engineering components using a client-server network structure in a Web-based recognition system. A remote engineer is able to draw directly the shape of engineering components using the browser, and the recognition system will search for the component database of a company using the Internet. Component patterns are stored in the database system. Their properties and specifications are also attached to the data field of each component pattern except that of engineering components. In our approach, the recognition system adopts parallel computing, and will raise the recognition rate. Our recognition system is a client-server network structure using the Internet. The system uses a recurrent neural network (RNN) with associative memory to perform training and recognition. The last phase utilizes the technology of database matching and solves the problem of spurious state. Our system will be used at the Yang-Fen Automation Electrical Engineering Company.
利用RNN开发了一个基于web的构件数据库模式搜索模式识别系统
本研究尝试在基于web的识别系统中,利用客户端-服务器网络结构,将带有联想记忆的模式识别技术应用于工程部件的实时模式识别。远程工程师可以使用浏览器直接绘制工程部件的形状,识别系统将使用互联网搜索公司的部件数据库。组件模式存储在数据库系统中。它们的属性和规格也附加在除工程组件外的每个组件模式的数据字段中。在我们的方法中,识别系统采用并行计算,提高了识别率。我们的识别系统是一个使用Internet的客户机-服务器网络结构。该系统使用具有联想记忆的递归神经网络(RNN)进行训练和识别。最后利用数据库匹配技术,解决了虚假状态问题。我们的系统将在杨芬自动化电气工程公司使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信