Дмитрий Булатицкий, D. Bulatitskiy, Александр Буйвал, Aleksandr Buyval, Михаил Гавриленков, Mikhail Gavrilenkov
{"title":"Building Recognition in Air and Satellite Photos","authors":"Дмитрий Булатицкий, D. Bulatitskiy, Александр Буйвал, Aleksandr Buyval, Михаил Гавриленков, Mikhail Gavrilenkov","doi":"10.30987/graphicon-2019-2-173-177","DOIUrl":null,"url":null,"abstract":"The paper deals with the algorithms of building recognition in air and satellite photos. The use of convolutional artificial neural networks to solve the problem of image segmentation is substantiated. The choice between two architectures of artificial neural networks is considered. The development of software implementing building recognition based on convolutional neural networks is described. The architecture of the software complex, some features of its construction and interaction with the cloud geo-information platform in which it functions are described. The application of the developed software for the recognition of buildings in images is described. The results of experiments on building recognition in pictures of various resolutions and types of buildings using the developed software are analysed.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-173-177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The paper deals with the algorithms of building recognition in air and satellite photos. The use of convolutional artificial neural networks to solve the problem of image segmentation is substantiated. The choice between two architectures of artificial neural networks is considered. The development of software implementing building recognition based on convolutional neural networks is described. The architecture of the software complex, some features of its construction and interaction with the cloud geo-information platform in which it functions are described. The application of the developed software for the recognition of buildings in images is described. The results of experiments on building recognition in pictures of various resolutions and types of buildings using the developed software are analysed.