Combining Multiple Manifold-Valued Descriptors for Improved Object Recognition

Sadeep Jayasumana, R. Hartley, M. Salzmann, Hongdong Li, M. Harandi
{"title":"Combining Multiple Manifold-Valued Descriptors for Improved Object Recognition","authors":"Sadeep Jayasumana, R. Hartley, M. Salzmann, Hongdong Li, M. Harandi","doi":"10.1109/DICTA.2013.6691493","DOIUrl":null,"url":null,"abstract":"We present a learning method for classification using multiple manifold-valued features. Manifold techniques are becoming increasingly popular in computer vision since Riemannian geometry often comes up as a natural model for many descriptors encountered in different branches of computer vision. We propose a feature combination and selection method that optimally combines descriptors lying on different manifolds while respecting the Riemannian geometry of each underlying manifold. We use our method to improve object recognition by combining HOG~\\cite{Dalal05Hog} and Region Covariance~\\cite{Tuzel06} descriptors that reside on two different manifolds. To this end, we propose a kernel on the $n$-dimensional unit sphere and prove its positive definiteness. Our experimental evaluation shows that combining these two powerful descriptors using our method results in significant improvements in recognition accuracy.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We present a learning method for classification using multiple manifold-valued features. Manifold techniques are becoming increasingly popular in computer vision since Riemannian geometry often comes up as a natural model for many descriptors encountered in different branches of computer vision. We propose a feature combination and selection method that optimally combines descriptors lying on different manifolds while respecting the Riemannian geometry of each underlying manifold. We use our method to improve object recognition by combining HOG~\cite{Dalal05Hog} and Region Covariance~\cite{Tuzel06} descriptors that reside on two different manifolds. To this end, we propose a kernel on the $n$-dimensional unit sphere and prove its positive definiteness. Our experimental evaluation shows that combining these two powerful descriptors using our method results in significant improvements in recognition accuracy.
结合多个流形值描述符改进目标识别
提出了一种利用多流形值特征进行分类的学习方法。流形技术在计算机视觉中越来越受欢迎,因为黎曼几何经常作为计算机视觉不同分支中遇到的许多描述符的自然模型出现。我们提出了一种特征组合和选择方法,该方法可以最优地组合位于不同流形上的描述子,同时尊重每个底层流形的黎曼几何。我们使用我们的方法通过结合HOG \cite{Dalal05Hog}和区域协方差\cite{Tuzel06}两个不同流形上的描述符来改进目标识别。为此,我们在$n$维单位球上提出了一个核,并证明了它的正确定性。我们的实验评估表明,使用我们的方法结合这两个强大的描述符可以显著提高识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信